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How to characterize the dynamics of cold atoms
in non-dissipative optical lattices?

BY D. HENNEQUIN* AND PH. VERKERK

Laboratoire PhLAM, UMR CNRS, CERLA, Université de Lille 1,
59655 Villeneuve d’Ascq, France

We examine here the classical dynamics of cold atoms in square optical lattices, i.e.
lattices obtained with two orthogonal stationary plane waves. Contrary to many of the
past studies in this domain, the potential here is time independent and non-dissipative.
We show that, as a function of the experimental parameters, very different behaviours
are obtained, both for the dynamics of atoms trapped inside individual sites and for
atoms travelling between sites: inside the sites, chaos may be the main regime or, on
the contrary, it may be negligible; outside the sites, chaos sometimes coexists with other
regimes. We discuss the consequences of these differences on the macroscopic behaviour of
the atoms in the lattice, and we propose experimental measurements able to characterize
these dynamics and to distinguish between the different cases.

Keywords: cold atom; chaos; optical lattice; nonlinear dynamics

1. Introduction

The cooling of atoms to extremely low temperatures, through the use of magneto-
optical traps (MOTs), has provided since the mid-1980s fantastic possibilities to
increase our experimental knowledge of the quantum world. The most spectacular
of these was the achievement of the Bose–Einstein condensation, and thus of
macroscopic quantum objects. However, even in the classical world, the possibility
of studying the dynamics of atoms not ‘blurred’ by the Doppler effect is very
exciting. This requires the development of tools to manipulate the atoms, e.g. for
guiding them or ‘designing’ their phase space.

Optical lattices provide such tools; their versatility allows atoms to be
manipulated with an extreme precision and a relative ease (Guidoni & Verkerk
1999). Because of these qualities, they represent an outstanding toy model,
and have recently attracted increasing interest in various domains. Condensed
matter systems and strongly correlated cold atoms in optical lattices have
strong similarities, as in the superfluid–Mott insulator quantum phase transition
(Greiner et al. 2002) or in the Tonks–Girardeau regime (Paredes et al. 2004).
Here, the interactions between atoms play a crucial role, and require the use
of a Bose–Einstein condensate. In particular, instabilities are expected in the
Gross–Pitaevskii equation because of the nonlinear term (Thommen et al. 2003;
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Fang & Hai 2005; Kuan et al. 2007). Quantum computing also requires a coupling
between atoms; the optical lattices appear to be an efficient implementation of a
Feynman’s universal quantum simulator (Jaksch & Zoller 2005), and are among
the most promising candidates for the realization of a quantum computer (Mandel
et al. 2003; Vollbrecht et al. 2004). On the other hand, non-interacting atoms
also exhibit interesting behaviours. In this case, the physics is essentially that of
a single atom. A higher number of atoms simply increases the observable signal.
That is the case in statistical physics, where cold atoms in optical lattices, through
their tunability, made possible the observation of the transition between Gaussian
and power-law tail distributions, in particular the Tsallis distributions (Jersblad
et al. 2004; Douglas et al. 2006) or that of Anderson localization (Billy et al. 2008;
Chabé et al. 2008; Roati et al. 2008).

Non-interacting cold atoms also appear to be an ideal model system to study
the dynamics of a system in its classical and quantum limits. Both are closely
related, as the latter is defined only as a function of the former. In particular,
quantum chaos is defined as the quantum regime of a system whose classical
dynamics is chaotic. A good understanding of the classical dynamics is therefore
an essential prerequisite to the study of quantum dynamics. In non-dissipative
optical lattices, both the classical and the quantum limits are experimentally
accessible, and it is even possible to change quasi-continuously from one regime
to the other (Steck et al. 2000). Moreover, the extreme flexibility of the optical
lattices makes it possible to imagine a practically infinite number of configurations
by varying the complexity of the lattice and the degree of coupling between the
atoms and the lattice.

Many results have been obtained in recent years in the field of quantum chaos
(Steck et al. 2000; Lignier et al. 2005). However, all these studies have used
very simple potentials, mainly one-dimensional. Chaos is obtained only with a
periodic (or quasi-periodic) temporal forcing of the depth of the lattice (Steck
et al. 2000; Lignier et al. 2005), and only the temporal dynamics of the individual
atoms is studied. The introduction of this external clock and the restriction to
one-dimensional potentials reduce considerably the generality of these results
and the type of possible dynamics. In particular, the behaviours related to
the appearance of new frequencies or to a frequency shift (quasi-periodic and
homoclinic bifurcations, for example) are impossible.

If we want to overcome these limitations, several problems have to be examined.
What type of time-independent lattice will lead to a reasonably complex
dynamics? What are the relevant quantities to characterize this dynamics?
And what are those that can be implemented experimentally? Note that these
questions need to be answered first for the classical atoms. We have to search
for a configuration leading to complex classical dynamics. And, experimentally,
the dynamics in the classical limit must be characterized before considering the
quantum system. In this paper, we address these questions, limiting our analysis
to the classical limit. The quantum counterpart will be discussed in a future
publication. In §2, we give some facts about cold atoms and optical lattices for
those who are not familiar with this domain, and we discuss the possible lattices
leading to complex dynamics. Section 3 is devoted to the dynamics of atoms
inside the wells, while §4 deals with the dynamics of atoms travelling between
several wells. Finally, we discuss in §5 the possible implementation of experimental
measurements.
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2. Context: cold atoms and optical lattices

Cold atoms refer here to atoms cooled through an MOT. The cooling is mainly
obtained through an exchange of the momentum between an atom and a
counterpropagating optical beam—while the absorption of a photon by the atom
leads to a deceleration of the atom in the direction of the beam, the spontaneous
re-emission of the photon arises in a random direction, and so does not change,
on average, the atom velocity. To slow down atoms in three dimensions, three
pairs of counterpropagating laser beams are necessary. Obviously, a moving
atom is decelerated by the photons travelling in the opposite direction, but it is
accelerated by photons travelling in the same direction. However, the frequency of
these trap beams is detuned to the red of the atomic transition, so that, because
of the Doppler effect, the front photons are closer to resonance, and thus the
deceleration process is more efficient than the acceleration one. This Doppler
cooling process is coupled to an inhomogeneous magnetic field, which enhances
the cooling process through the Zeeman level splitting, and adds a restoring force
to increase the atomic density of the cloud of cold atoms. MOTs lead typically, for
caesium atoms, to a 2 mm diameter cloud of 108 atoms at 5 mK. Such a cloud of
cold atoms can exhibit spatio-temporal instabilities and chaos (Wilkowski et al.
2000; di Stefano et al. 2003, 2004; Hennequin 2004), but an adequate choice of
the experimental parameters leads to a stable cloud with atoms whose residual
motion is the thermal agitation.

A classical atom follows the motion equations of any classical object, and in
particular Newton’s second law F = mr̈ , where F is the force, r the position and
m the mass (in the following, we take m = 1). When such an atom is dropped in a
stationary wave, it undergoes a force F , the potential U of which is proportional
to the wave intensity I , and inversely proportional to the detuning D between
the wave frequency and the atomic transition frequency,

F = −VU (2.1)

and

U ∝ I
D

. (2.2)

Thus, atoms accumulate in bright (resp. dark) sites for D < 0 (resp. D > 0). When
the atoms are cooled with the MOT, the atomic density in these optical lattices
is small enough to neglect the collisions between atoms, and so the only source of
dissipation is the spontaneous emission. As spontaneous emission is proportional
to I /D2, it is relatively easy to build conservative optical lattices. Moreover,
the classical or quantum nature of the atoms in the lattice can be adjusted
continuously, as it depends on the ratio between the temperature (or energy)
of the atoms and the depth of the lattice wells. For wells deep enough when
compared with the atom temperature, the quantum properties of the atom, and
in particular tunnelling, vanish, and thus atoms can be considered as classical
(Greiner et al. 2001). In the following, we always consider classical atoms, as
discussed earlier.

The atom dynamics in the lattice depends on the dimensionality of the lattice.
For example, in a one-dimensional lattice, atoms have only two dynamical degrees
of freedom, and thus, even if the potential is not harmonic, the dynamics cannot
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Figure 1. (a) Layout of the laser beams. (b) Spatial distribution of the intensity in the (X , Y )
space. Black corresponds to the minimum value (zero intensity), while white corresponds to the
maximum. The dotted square delimits the elementary mesh of the lattice, and the white crosses
are the saddle points.

be complex. It is necessary to add at least a periodic forcing in such a lattice
to observe chaos. On the contrary, a two-dimensional lattice can exhibit chaos,
without external forcing.

But the atom dynamics also depends on the lattice geometry, and numerous
lattice geometries can be obtained, as, for example, a vertical stack of ring traps
(Courtade et al. 2006), a fivefold symmetric lattice (Guidoni et al. 1999) or even
quasi-periodic lattices (Guidoni et al. 1997). In this paper, we will focus on the
case of two orthogonal stationary plane waves with the same polarization. The
configuration of the laser beams is shown in figure 1a. The total field is E =
cos kx + eif sin ky, where x and y are the two space coordinates, f a phase, k =
2p/l the wave vector and l the wavelength of the laser beam. The intensity can
be written as

I = cos2 kx + cos2 ky + 2a cos kx cos ky, (2.3)

where a = cos f. With the adequate normalization, the potential is

U± = ±I , (2.4)

where the explicit sign is that of D. When a = 0, the coupling between x and
y disappears, and the problem becomes separable. In all the other cases, the
coupling between x and y could induce complex dynamics. It is easy to see that, in
these cases, the elementary mesh of the potential is on a p/4 from the (x , y)-axes;
thus, it is natural to introduce the following new coordinates:

X = kx + ky (2.5)

and
Y = ky − kx . (2.6)

The intensity and the potential can now be written as

I = U+ = −U− = 1 + a(cos X + cos Y ) + cos X cos Y . (2.7)
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Before studying the potential, let us concentrate on the intensity. As an
example, figure 1b shows the spatial distribution of the intensity for a = 0.5.
The elementary mesh is indicated by the dotted line. Assuming a > 0, the
intensity I has an absolute maximum 2(1 + a) at coordinates (n2p, m2p), where
m and n are integers. It also has a relative maximum 2(1 − a) in (p + n2p,
p + m2p). Once again, we see that a = 0 is a special case because the absolute
and relative maxima have the same height. Note that a = 1 is another special
case, where the intensity at the relative maximum vanishes and, thus, is equal to
the minimum value. In this special case, we have black lines along X = p + n2p
and Y = p + n2p. We will not consider these cases in the following. On the other
hand, the intensity goes to zero in (p + n2p, m2p) and (n2p, p + m2p). Two
neighbouring zeros are separated by a saddle point where the intensity has the
value I = 1 − a2. It is important to note that these saddle points are on the
bisectors, connecting on a straight line an absolute maximum to a relative one
and again to the next absolute maximum. On the contrary, the saddle points do
not stand on the straight line that connects two neighbouring zeros. This will
induce a huge difference in the dynamics of atoms in the lattice obtained for red
detunings (D < 0), where the atoms are attracted in high-intensity regions, and
that for blue detunings (D > 0), where the atoms are repelled from these same
regions. The bisectors are clearly escape lines for the atoms when D < 0, whereas
this is not the case for D > 0.

Optical lattices appear to be an exciting tool to study the dynamics of a
conservative complex system, but how do we characterize this dynamics in the
experiments? What are the experimentally accessible quantities? The typical size
of a lattice mesh is l/2, i.e. 426 nm for caesium. As the diameter of a cold
atom cloud is typically 2 mm, the 108 atoms are dropped in 22 × 106 sites for
a two-dimensional lattice, which leads to five atoms/site. At these scales, it
is clear that there is no way to isolate an atom, and thus no way to follow
its trajectory. Moreover, to see an atom, we need light, and thus the measure
introduces a dissipation and destroys the atomic state. A typical measure consists
of illuminating the atoms with a laser flash and recording the fluorescence of the
atoms through a camera. This destructive measure gives snapshots of the atom
distribution in the space. We examine in the following whether it is possible to
extract information about the atom dynamics from this type of measurement.

3. Dynamics of atoms inside the wells

Before we search for signatures of the dynamics in the experimental
measurements, let us investigate in more detail what are the relevant parameters
and characteristics of the atom dynamics in a lattice. To illustrate this approach,
let us consider again the two lattices introduced in §2. Although these two lattices
differ only by the sign of their potential, they are very different. U− has its wells
where the light intensity is maximum, while U+ has its wells where the intensity
vanishes. Let us denote by ET the value of the potential energy at the saddle
point of the intensity. Atoms, the energy E of which is smaller than the threshold
ET, are trapped into one site because they cannot climb up to the saddle point.
On the contrary, atoms with E > ET can travel between sites, if they move in the
right direction.
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Inside a trap site, the energy of the atom plays the role of a stochastic
parameter. Indeed, for low energies, the atoms remain located close to the bottom
of the well, and their dynamics can be approximated by a harmonic motion. As
the energy increases, the potential becomes more anharmonic, the nonlinearities
increase and the dynamics can become more complex. To be able to compare the
behaviour of atoms in different potentials, we take, in the following, the origin of
the energy at the bottom of the wells and normalize the energy so that ET = 1.
The potential energy then takes a different form for red and blue detunings

U+ = I
1 − a2

(3.1)

and

U− = 2(1 + a) − I
(1 + a)2

. (3.2)

Let us now examine in detail the dynamics of the atoms in our two potentials.
The most relevant way is to look at the evolution of the Poincaré sections as
a function of the energy. Our phase space is four-dimensional, with directions
(X , Y , Ẋ , Ẏ ), but, because of the energy conservation, the accessible space
reduces to a three-dimensional surface. We choose to consider the Poincaré section
at Ẏ = 0 with increasing values, and, thus, Poincaré sections are in the three-
dimensional space (X , Y , Ẋ), and they lie on a two-dimensional surface SP, which
is shaped like a semi-ellipsoid. To represent the Poincaré sections, we can project
them on the (X , Y ) plane or on the more usual (X , Ẋ) plane. The latter shows
the Poincaré sections viewed from the vertex of the semi-ellipsoid. However,
here, because of the stiff sides of SP, the projection in this plane leads to a
confused map, as many curves are projected at the same location, and thus are
superimposed. On the contrary, the projection on the (X , Y ) plane gives more
detail, and thus, in the following, we often choose it. However, let us keep in
mind that we are looking at the lateral projection of a ‘bell’, and thus that we
superimpose its front and rear faces.

As pointed out before, because of the normalization we choose for the energy,
the form of the potential energy differs in the cases of blue or red detuned lasers.
We investigate each case separately.

In the case of red detuned lasers, the potential energy takes the form

U− = u2
0(1 − cos X) + u2

0(1 − cos Y ) − (1 − cos X)(1 − cos Y )
(1 + a)2

(3.3)

with

u2
0 = (1 + a)−1. (3.4)

This potential appears to be the sum of two simple pendula coupled through
the third term. The frequency for oscillations with a small amplitude is the
same for the two directions. This degeneracy, together with the coupling
term, leads to a strong synchronization of the motion in the two directions
(Bennett et al. 2002). However, in contrast with the Huygens clocks, we do not
have any dissipation here, and so the frequency locking occurs in a more subtle
way (Hennequin & Verkerk in press).
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It is interesting to identify the resonances of the system. A very simple approach
is to restrict the problem to the first anharmonic terms, similar to the undamped
Duffing oscillator. We then look for a periodic harmonic solution in the form
X = X0 cos(ut) and Y = Y0 cos(ut + 4), with u close to u0. We drop terms at
other frequencies (i.e. 3u) and, consequently, have six families of solutions. The
first two are the trivial ones—motion along the X or the Y directions (Y0 = 0 or
X0 = 0). The other four are obtained for X0 = Y0 and for 4 = 0, p, ±p/2. For a
given energy E , the relations giving X0 and u are not simple, and it is beyond the
aim of this article to write them explicitly. For the large amplitudes considered
in the following, the motion is no longer harmonic and we cannot keep only the
lower order terms, but the main result remains—we have six periodic trajectories,
leading to points in the Poincaré section (except for the trajectory Y0 = 0, which
we cannot catch in a Poincaré section at Ẏ = 0). In the three-dimensional space,
these points have the coordinates (0, −Y0, 0), (±X0, −X0, 0) and (0, −X ′

0, ±uX ′
0).

In figure 2, we show the dynamics in the U− potential for different normalized
energies in the case of a = 0.5. These results have been obtained through
numerical resolution of the equations of motion that are derived from the
potential (3.3), without the addition of any random quantity. All the described
behaviours are thus deterministic. For each value of the energy, we project the
Poincaré section on the (X , Y ) plane (figure 2a,c,e) and on the (X , Ẋ) plane
(figure 2b,d,f ). For low enough energies (e.g. E = 0.8, figure 2a,b), we see four
distinct domains separated by an X-shaped separatrix. In each of these domains,
the Poincaré section is cycling around one of the non-trivial resonances found
above. As the motion along X and Y is governed by the same frequency, and
because of the coupling between these two pendula, a synchronization between
the two directions occurs, through a phase locking between the two motions. The
corresponding behaviour can be described as mainly a u periodic cycle perturbed
by small sidebands (Hennequin & Verkerk in press).

The dynamics in U− evolves only slightly when E is increased. The Poincaré
surfaces are always organized around the separatrix delimiting four areas.
In each area, the nature of the motion is the same, namely phase locking
between the motions in the X and Y directions. Chaos appears close to the
separatrix for E � 0.88 (figure 2c,d), but it remains marginal, even when E = 1
(figure 2e,f ). This very small extent is due to the original degeneracy of the
frequencies of the coupled pendula and to the strong coupling between them
(Hennequin & Verkerk in press).

For blue detunings (D > 0), the bottom of the well corresponds to I = 0, i.e.
(X = 0, Y = p) sites. For the sake of simplicity, we shift the origin in Y by p, in
order to have a trapped motion centred at the origin. Thus, we can write

U+ = u2
0X (1 − cos X) + u2

0Y (1 − cos Y ) − (1 − cos X)(1 − cos Y )
(1 − a2)

(3.5)

with

u2
0X = (1 + a)−1 (3.6)

and

u2
0Y = (1 − a)−1. (3.7)
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Figure 2. (a,c,e) (X , Y ) and (b,d,f ) (X , Ẋ) Poincaré sections of the atomic dynamics in the U−
potential. (a,b) E = 0.80; (c,d) E = 0.88; (e,f ) E = 1.00.

Once again, this potential appears to be the sum of two coupled pendula. But,
now, the two frequencies for oscillations with small amplitudes are different—
for the value a = 0.5 chosen here, the ratio

√
3 of these two frequencies is

irrational.
For very small energies (figure 3a), the dynamics consists essentially of a

regular motion around the bottom of the well, along a quasi-periodic trajectory
with frequencies uX and uY close to u0X and u0Y . At the top of figure 3a,
Poincaré sections are those of atoms, the motion of which is essentially along
the X -axis. In Y = 0, the trajectory is a periodic cycle along the X direction
(edge of the semiellipsoid). On the contrary, the periodic cycle at the bottom
of the figure corresponds to the situation where the atomic motion is exclusively
along the Y -axis (vertex of the semiellipsoid). Note that the nature of the motion
along these quasi-periodic cycles is very different from those described with D < 0.
Indeed, as u0X and u0Y are very different, no locking occurs. In particular, in the
spectrum of the motion, the two main frequencies are close to u0X and u0Y .
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Figure 3. (X , Y ) Poincaré sections of the atomic dynamics in the U+ potential. (a) E = 0.4,
(b) E = 0.63, (c) E = 0.80, (d) E = 0.88, (e) E = 0.93 and (f ) E = 1.00.

As the energy of the atom is increased, the atom can climb further and further
in the well, the frequencies uX and uY change because of the anharmonicity of the
potential, but the dynamics does not change fundamentally until E � 0.6. At that
point, a new feature appears—a stable periodic trajectory shows up as a cycle
close to the bottom of figure 3b, obtained for E = 0.63. In fact, for amplitudes
large enough, the frequencies uX and uY depart so much from their initial values
u0X and u0Y that a new resonance appears at uY = 2uX .

For higher energies, the uY = 2uX resonance grows and comes closer to the
centre of the figure and influences a non-negligible fraction of the trajectories.
In figure 3c, for E = 0.8, the resonance is clearly visible in Y � −0.74. In the
(X , Y , Ẋ) space, its Poincaré section consists of two points (superimposed in
the projection of figure 3c), explored alternatively by the trajectory. Around
this point, the Poincaré sections are a double closed loop. The corresponding
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quasi-periodic motion consists of a perturbed uY = 2uX phase-locked periodic
cycle, where the perturbation consists of small sidebands of uX and uY in the
spectrum. Thus, the separatrix appears here to be the limit between this phase-
locked and the unlocked behaviours. The central domain and the two linked lateral
domains (figure 3e,f ) correspond to the phase locking. The difference between
these two domains is the relative phase on the motion along X and Y . In the
two other domains (top and bottom), there is no locking between the uX and uY
frequencies.

In E = 0.8 (figure 3c), all the trajectories are still periodic cycles or quasi-
periodic tori. When the energy is increased further, chaos appears at E � 0.88,
starting in the vicinity of the separatrix (figure 3d). Then, it expands with some
quasi-periodic islands remaining (figure 3e), but finally, for E = 1 (figure 3f ), the
only significant quasi-periodic domains are those around the X and Y periodic
cycles. Around the locked periodic cycles, a narrow area with tori remains, but
chaos appears really to be dominant.

We have shown in this section that it is relatively easy to find two slightly
different lattices with fundamentally different dynamics. These two configurations
are easy to reach experimentally, as they differ only by the sign of the detuning.
It would be interesting now to examine how to measure experimentally these
differences, and whether these differences have an impact on the dynamics of
atoms when they jump between sites of the lattice. The next section deals with
the latter.

4. Dynamics of atoms visiting several wells

To travel from site to site, an atom needs to have an energy E � 1, but this is
not a sufficient condition. Only atoms with an adequate trajectory will effectively
escape from a well. This implies that, for a given energy E � 1, at least two classes
of atoms can exist—trapped atoms remaining in a single well, and travelling
atoms, which escape the wells. In fact, the situation is more complex, as we will
see now.

Let us first examine the dynamics of travelling atoms in the blue case
(D > 0). We are interested here in atoms with an energy 1 < E < 4. Indeed, atoms
with E > 4 have an energy larger than the potential maximum, and thus they ‘fly’
above the potential, and their trajectory is purely ballistic. On the contrary,
the dynamics of the atoms with an intermediate energy consists of complex
trajectories visiting a large number of sites, as in a random walk. As our model is
fully deterministic, it involves, in fact, chaotic trajectories. Figure 4a illustrates
such a chaotic diffusion—it reports the trajectories followed by 100 atoms. Such
a trajectory is in fact an alternation of oscillations inside wells and of jumps
between wells. Here, we know that chaos dominates inside the wells, and thus the
chaotic nature of the diffusion is not surprising. However, as we will see below,
the existence of chaos inside the wells is not a necessary condition to observe a
chaotic diffusion.

To think of an experimental characterization of this chaotic diffusion, a simple
way would be to characterize the diffusion function and to evaluate a diffusion
coefficient. Figure 5a shows the distance covered by atoms of high energy (E =
2.66) as a function of time. With such high energies, all atoms travel between
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Figure 4. (X , Y ) plot of the trajectories of 100 atoms in the (a) U+ (E = 2.66) and (b) U− (E =
1.07) lattices. Each atom starts in the central mesh, and moves during the time t = 106, which
corresponds to more than 105 periods of oscillation at the bottom of a well.
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Figure 5. Distance covered by 100 atoms as a function of time. Parameters are the same as in
figure 4: (a) U+ and E = 2.66; (b) U− and E = 1.07.

wells. They all follow a similar behaviour, characterized by a diffusion over a
distance of the order of 103 for the time interval of the figure. Although there
is a small dependence of these curves as a function of the energy of the atom,
the orders of magnitude remain the same for all energies 1 < E < 4. The only
difference is that, for lower energies, some atoms remain trapped in their well,
and so a second group of curves appears with atoms remaining within a short
distance (smaller than the mesh, i.e. 2p) of their initial location.

In the red detuned situation (D < 0), the maximum of the potential is at E =
1.33. As in the blue case, atoms with an energy E > 1.33 have ballistic trajectories,
and atoms with 1 < E < 1.33 exhibit a diffusive chaotic behaviour (Figure 4b).
The origin of chaos now is clearly in the jumps between wells, as the dynamics
in the wells is regular. And, in fact, there is a main difference when compared
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with the blue case—the diffusion scale is larger by one order of magnitude, on
the whole interval 1 < E < 1.33. We did not check whether the slower diffusion
originates effectively in the chaotic trajectories followed by the atoms inside the
wells, but it would be interesting to check in a future study how these chaotic
behaviours could slow down the atoms. However, the difference of one order
of magnitude in the diffusion speed reveals that the macroscopic behaviour of
atoms could effectively be used to characterize the nature of the dynamics in
optical lattices.

But there is another important difference between the two lattices—in the red
case, a third regime exists, neither trapping nor diffusing. This is illustrated in
figure 4b, where trajectories appear following the two bisectors. These trajectories
correspond to atoms travelling along the escape lines of the lattice, as they were
described in §2. These atoms follow, in fact, a ballistic trajectory, where they
travel very rapidly along the bisectors. For example, in figure 4b, the ballistic
trajectories reach 106 in all directions, while the diffusive atoms reach only 2 × 104

of the same units in the same time. Note that the ballistic trajectories we discuss
here occur as soon as the threshold E = 1 is reached, and only along the escape
lines of the potential.

Figure 5b shows the distance covered by the atoms as a function of time. We
now clearly have three groups of trajectories: trapped trajectories at the bottom,
diffusive trajectories for distances of about 104 and ballistic trajectories at the
top, for distances larger than 105. The main difference when compared with the
D > 0 case is the cohabitation of ballistic and diffusive trajectories, even just
above the threshold. This provides evidence of three specific time scales of the
dynamics of atoms with a given energy, associated, respectively, with the trapped,
the chaotic diffusive and the ballistic trajectories.

In this section, we examined the dynamics of atoms, whose energy is large
enough to escape the potential wells, but remains smaller than the potential
maxima. We focused on atoms travelling between wells, and found a different
behaviour for our two lattices. For the red lattice, atoms can be classified
according to two types of dynamics—the diffusive atoms exhibit a chaotic
dynamics carrying them off their initial location; the ballistic atoms move away
rapidly from their initial location. These behaviours are associated with two
different time scales. But is it sufficient to identify these different regimes in
a real experiment? We have also shown that the dynamics of atoms in the blue
lattice is quite different, both for the diffusive regime and for the ballistic one—
the time scale of the former is one order of magnitude smaller, while the latter
simply does not exist. Can we use these properties to characterize and distinguish
experimentally the two lattices? These questions are discussed in the next section.

5. Macroscopic signatures of chaos

Our aim is to characterize the dynamics of the cold atoms in the optical lattice.
As we are concerned by conservative lattices, we cannot hope to ‘film’ in real
time the atoms in the lattice, as it would introduce dissipation. Thus, we
have to find other techniques. As the specificity of each lattice concerns the
travelling atoms, an experimental measurement aimed at characterizing these
lattices should characterize these travelling atoms.
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Figure 6. Number of atoms versus time in (a) U+ potential and (b) U− potential.

Experimentally, the lattice is finite. So the travelling atoms will reach the edge
of the lattice, and finally leave the lattice. Therefore, a simple measure of the
lifetime of the atoms in the lattice gives information about the trapped and
travelling atoms. However, as there are several types of travelling atoms, the
simple measure of a lifetime is not sufficient, and the lifetime curve itself, in
particular its shape, must be analysed. Thus, we will plot now the number of
atoms in the lattice as a function of time. The shape of the curve and the lifetime
itself should give information about the travelling atoms, while the baseline gives
the percentage of trapped atoms.

In the experiment, all the atoms do not have the same energy, but, on the
contrary, they exhibit a distribution of energies linked to their temperature. Thus,
the results shown below have been obtained by using a sample of atoms with an
appropriate distribution of energy.

Figure 6a shows the number of atoms in the blue lattice versus time. To
simulate the finite size of the lattice, atoms are removed as soon as they reach
a distance DL = 1000. The curve exhibits a plateau at short times, followed
by a exponential-like decrease to an asymptote. The plateau corresponds to
the time needed by the first atoms to reach the edge of the lattice (in the
simulations, all the atoms are supposed to be initially at the centre of the lattice).
The decrease corresponds to the diffusing atoms escaping the lattice, and the
asymptote to the number of atoms trapped in wells. This behaviour does not
depend on the lattice size DL, except that the lifetime of atoms increases. In
fact, the distance DL = 1000, i.e. about 150 lattice meshes or 70 mm for a Cs
trap, is smaller by one order of magnitude than a typical experimental result.
However, a value of DL = 104 leads, for the data presented in figures 4a and
5a, to an almost flat curve because the time series are not long enough. To
reach such a distance, one should increase the evolution time by two orders
of magnitude.

Figure 6b shows the number of atoms in the red lattice versus time, for
DL = 104. The shape of the curve is qualitatively different from that obtained
for the blue lattice. At short times, a fast decrease appears, corresponding to
the loss of the ballistic atoms. At long times, not visible in the figure, an
asymptote is reached, corresponding to the trapped atoms. The intermediate
decrease corresponds to the loss of the diffusing atoms. Note that the decrease
appears to be more or less linear. In fact, the shape of this part of the curves
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is the sum of the diffusing losses of different classes of atoms differing by their
energy. As a function of DL, this sum can exhibit very different shapes, from an
exponential-like shape, as in figure 6a, to an almost linear shape, as in figure 6b.

Figure 6 shows that the measure of the lifetime of atoms in a conservative
optical lattice provides qualitative and quantitative information about the nature
of the lattice and the nature of the dynamics of the atoms in the lattice,
in particular about the chaotic diffusion. Therefore, the measure of the atom
lifetime, in particular the existence of several characteristic times in the decrease
of the atom number, appears to be a signature of the chaotic dynamics of atoms
in the lattice.

6. Conclusion

We have shown in this paper that optical lattices are a good toy model to study
experimentally the dynamics of conservative systems, provided that relevant
experimental measures are found to characterize this dynamics. In particular,
we show that changing a simple experimental parameter can lead to two very
different lattices, where atoms exhibit very different dynamical behaviours. We
have shown that these differences exist both in the local dynamics of atoms
inside a well and in the non-local dynamics of atoms travelling between wells.
We searched numerically for signatures of these different dynamics in the
experimentally accessible quantities, and found that the measure of atom lifetimes
in the lattice gives vast information about the existence and the type of chaotic
diffusion of the atoms.

It would be interesting now to characterize more precisely the diffusion
function, as a function of the experimental parameters, in particular the atom
temperature and the lattice size, and obviously to test these results in a real
experiment.

We considered in this paper only the dynamics of classical atoms, and it
appears that this dynamics is more complex and more subtle than those usually
considered. Simple statistical analyses are not enough to fully characterize this
dynamics, and more suitable tools are necessary. It is important now to think
about the consequences of these results in the quantum regime, and, in particular,
about what the equivalent measures could be in the quantum world.
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