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We describe in this paper the dynamics of a bimode CO; laser with an intracavity saturable ab-
sorber, more precisely the competition between the two modes when their single-mode regime is
unstable and as simple as possible, i.e., with a single spike. The transition between the two modes
occurs through a succession of periodic regimes separated by nonperiodic ones. The former are
governed by the Farey arithmetic and lie on a staircase. Spectrum analyses and return maps sug-
gest the existence of chaos in the nonperiodic states.

The laser is a very interesting illustration of the richness
of the dynamical phenomenology of nonlinear systems, in
particular concerning the phenomena connected with
chaos.! The CO; laser has received special atiention, and
has been investigated extensively, in different configura-
tions.2~8 Evidence of homoclinic chaos was demonstrated
in the CO, laser with feedback,’ as well as in the CO,
laser containing a saturable absorber (LSA).® The latter
is particularly interesting since it is an all-optical system
where the feedback is intrinsic.

We report in this paper on the experimental investiga-
tion of a bimode CO, LSA. We concentrate here on some
basic results obtained with bimode operation in the simple
case where both modes exhibit periodic pulses without
structure. We show that in this case, the dynamics may
be interpreted as the competition of two instability modes
that interact following the Farey arithmetic, in a sequence
of periodic regimes separated by stochastic ones that
present properties of deterministic chaos.

The experimental setup is made of a CO; laser contain-
ing CHsl as a saturable absorber. The essential modifi-
cation of the setup previously described in Ref. 6 consists
of an increase of the transverse size of the laser cavity to
allow for two-mode operation. The laser oscillates on the
P(32) line of the 10.6-um branch. The modes involved
here are two transverse modes separated by 15 MHz.
This frequency has to be compared with the free spectral
range (50 MHz) and the cavity linewidth (1 MHz). The
output intensity of the laser is detected through a
Hg,Cd, —,Te detector that is sensitive to the total intensi-
ty of the laser. We used here as a control parameter the
length of the cavity that governs the frequency detunings
between the laser transition and both cavity modes.

The behavior of the single-mode CO,+ CH3I LSA was
extensively studied in Ref. 6. In our experimental condi-
tions, it is characterized by a self-pulsing regime called
passive Q switching (PQS) in which the time evolution of
the laser intensity exhibits very different shapes depending
on the operating point.° We limit this paper to the case of
the competition of two modes whose single-mode opera-
tion is the simplest unstable one, i.e., P 0) following the
terminology introduced in Ref. 9. This means that the
laser emits periodic single-spike pulses. The P © regimes
of the two modes differ by both the period and the peak
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power of their pulses, that depend on the mode charac-
teristics, such as the central frequency or the losses. We
have checked by a heterodyne detection that in our experi-
mental conditions, the peak power of each mode in the un-
stable regime remains approximately constant as the cavi-
ty length is changed. For the sake of clarity, we name
mode 1 (mode 2) the mode with larger (smaller) peak
power.

As the cavity length is increased, the laser oscillates
first on mode 1 only, then in a bimode way, and eventually
on mode 2 only. In the range where the two modes in-
teract, the signal consists of a succession of antiphase os-
cillations of the two modes, as described in Ref. 10. The
transition from pure mode 1 to pure mode 2 as the cavity
length is changed appears as a succession of periodic
states separated by nonperiodic regimes.

Let us first examine the sequence of periodic regimes.
In the following, we will call r? a periodic regime formed
by p large pulses similar to those emitted by mode 1, fol-
lowed by r small pulses similar to those of mode 2. With
this notation, the single mode 1 operation is noted 0' and
the corresponding one for mode 2 is 1°. A similar nota-
tion was used by Maselko and Swinney in their study of
the Belousov-Zhabotinski reaction.'® Figure 1 shows as
an example a sequence of periodic oscillations observed as
the cavity length is increased. Two kinds of regimes may
be distinguished: (i) the basic ones simply coded by r”, as
the 1' or the 23 regimes, and (ii) those made by con-
catenation of two or more basic regimes ;' and r5?, in the
form (r§")"(r5?)™, as, e.g., (1%)222,

A “firing number” has been associated with each
periodic state, following the procedure proposed in Ref.
10. The firing number of an r? regime is defined as p/q
with ¢ =r+p. For example, the firing numbers associated
with 1', 22, and 2% are ¥, ¥, and , respectively. It ap-
pears here that different regimes may have the same firing
number. The firing number of a multipatterned signal is
obtained by using the Farey arithmetic, where the sum &
of two rational numbers p1/q, and p,/q; is

ﬂ$&=pl+P2
91 92 qitqx

Figure 2 shows the succession of periodic states ob-
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FIG. 1. Examples of periodic regimes observed between the
1" and the 12 states.

(ms)

served in our experiment when the frequency detuning is
varied so that the laser changes from mode 2 to mode 1
from left to right in the figure. On the y axis the firing
number associated with each observed periodic regime is
reported. It appears that they are organized following a
staircase, where the changes in period occur through a
monotonic variation of the firing number.
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FIG. 2. Plot of the firing number of all observed periodic
states as a function of the cavity detuning. The origin of the de-
tuning was fixed arbitrarily at the appearance of mode 1 (border
between pure mode 2 and bimode regimes, i.e., right side of the
step 19).
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It must be noticed that the different basic periodic
states observed in our experiment may be deduced using
the Farey arithmetic from the two limit regimes 1° and
0'. The Farey addition of the firing numbers associated
with the latter gives ¥ @ 1 = %, the simplest state associ-
ated with it is 1. The next steps of the tree may be deter-
mined in the same way. All the basic regimes of the first
four levels of the tree have been observed in our experi-
ment, as reported in Fig. 2, together with some states of
higher levels. Other ones would be undoubtedly observed
by increasing the stability of the experiment. As it was
noticed above, each firing number may be associated with
several regimes. For instance, 22 takes in the tree the
same place as 1'. The multipatterned regimes follow the
same arithmetic. Thus, 1222 is equivalent in the tree to
34 corresponding to a firing number of %. Every ob-
served regime may be placed in the tree, and follows the
Farey hierarchy.

The plot of Fig. 2 has a staircase structure that is strik-
ingly similar to that encountered in the evolution towards
chaos of quasiperiodic systems.!' Here, the number of
steps is finite and the staircase is not exactly the devil’s
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FIG. 3. Chaotic regime observed between the 1' and 22 re-
gimes. In (a), total intensity of the laser as a function of time.
In (b) [(c)], first return map (I,,I,-1) for intensity of mode 1
(mode 2).
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staircase which is obtained, e.g., at criticality in the circle
maps. '

Nonperiodic regimes appearing between the periodic
regions do not correspond to quasiperiodicity. In these re-
gimes, the spectrum of the laser intensity revealed the ap-
pearance of a new frequency in the system, accompanied
by a growth of the continuous background. Although the
second frequency seems to imply the presence of a torus,
the general shape of the spectrum was rather that of a
chaotic signal. A more accurate analysis was performed
through the reconstruction of the attractor in a derivative
phase space (I,1,1,...). In such a phase space, a plot of
the nth maxima versus the (n —1)th ones is a first return
map. As the total intensity is not a simple variable of the
system, the above treatment was applied separately to the
intensity of the two laser modes. Figure 3 shows the re-
turn maps of mode intensities in the nonperiodic regime
occurring between 1' and 22 A close look to them indi-
cates that the part of the cycle that appears, e.g., in the
upper right corner of Fig. 3(b) is not a cycle truncated by
a limited number of points, but keeps its shape as the
number of points is increased with an accumulation point
at one end. This suggests, together with the existence of a
broad spectrum, that this nonperiodic regime is chaotic.
Similar results were obtained in different points of the
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staircase.

We have shown that the LSA, in which two modes in
their single-spike pulsed regimes interact, exhibits anti-
phase oscillations. The transition between the two modes
occurs through a succession of periodic states separated
by chaos. We have shown that the whole transition be-
tween the two modes as a function of the laser cavity
length, is governed by the Farey arithmetics if we associ-
ate with each state a firing number deduced from a simple
code. Future experimental investigations should refine the
study of nonperiodic regimes by using higher dimensions
to reconstruct the attractor and defining a local measure
to plot one-dimensional maps. A good understanding of
the mechanisms from which this behavior originates
should be obtained by changing the parameters of the sys-
tem. However, a simple change of the well-controlled pa-
rameters leads here to the appearance of monomode re-
gimes with more complicated line shapes, e.g., P(")-type
oscillations.® As a consequence, a fruitful exploration of
the parameter space appears to be difficult in such experi-
ments.

Laboratoire de Spectroscopie Hertzienne is ‘“‘unite
associe au CNRS.”
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