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Atomic-velocity class selection using quantum interference
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A method enabling atomic velocity class selection by means of quantum interference in the two-photon
ionization of an atom through two quasiresonant intermediate levels is studied. This method is compatible with
the Doppler cooling in optical molasses, and it is able to attain temperatures colder than the Doppler limit. The
advantages and limitations of this method are discussed. We study the effect of the competition with the
Doppler cooling for temperatures lower than the Doppler limit, when the usual Doppler proeatsthe
atoms rather than cools them. The method is shown to be limited essentially by the loss of ground-state atoms
due to ionization. We also propose and study a “source” scheme in which new atoms are continuously
injected into the system, leading to a nonvanishing stationary number of cold atoms. Finally, we propose
generalizations of the method that allows us to combine it with Sisyphus-type mechanisms.
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PACS numbe(s): 32.80.Pj, 42.50.Vk, 32.80.Rm

I. INTRODUCTION The lower the temperature, the smaller the number of re-

In the last ten years, laser cooling of atoms has becomA&ining, cold, ground-state atoms. The present method is

. S . : ) Sompatible with the usual laser cooling schemes, so that this
one .Of the major and mpst promising subjects in atomlcdepopulation effect can be reduced by first cooling the atoms
physics and quantum optics, and a great deal of both thegsy 1q ;531 methods. However, if the temperature becomes
retical and experimental effort has been done in this fieldq.er than the Doppler limit, the Doppler mechanism tends
The theoretical limits for the minimum temperature haveiy heat the atoms. We shall study how the competition of

been progressively overcome. The so-called Doppler limithese two effects influences the performances of the quantum
(typically a hundred of microkelvinshas been beaten by interference velocity selection.

Sisyphus-type mechanisnig] and the minimum tempera-

ture pushed down to the photon recoil linir spontaneous

emission limi}, of the order of a few microkelvins. Two Il. VELOCITY SELECTION BY QUANTUM

methods relying on laser-atom interactions have been experi- INTERFERENCE

mentally demonstrated to allow cooling below the photon ] . ) ) )
recoil limit: velocity selection by coherent population trap- !N this section we recall the basic mechanism of velocity
ping (VSCPT) [2] and Raman subrecoil coolifg]. A third class_ se_:le(_:tlor_l using quantum mterference in the two-photon
method, the so-called “evaporative cooling4—7] that is atomic ionization. For a discussion of this process as a mean
not based on laser-atom interactions, and thus not limited bgf generating quantum coherencr—; see @]f' We shall re-
spontaneous emission effects, has led to record low temper trict ou_rselves here to the one-dlmenglonal case.

tures of a few nanokelvins and has recently allowed experi- Consider the atomic system shown in Fig. 1. The ground

mental observations of degenerate-gas Bose-Einstein coftate is co_upl_ed to the con_tinuum by two modes of the elec-
densatior{5—7]. tromagnetic field(characterized by photon numbers and

In a recent papef8], the possibility of using quantum "2 and wave numberks; gndkz) through two quasiresonant
interference in the two-photon ionization of an atom throughiNtérmediate levels, having the same natural wittMode
two quasiresonant intermediate levels in order to generat% (2) couples the ground state to the intermediate I¢og)
quantum coherence has been suggested. In particular, it h&§2)). With a dipole matrix element; (vz) and the inter-
been shown that quantum coherence can be generated BBediate levelle;) (ley)) to the continuum, with a dipole
tween internal and external degrees of freedom of the atomihatrix element; (v1) and laser-atom detuning (8,). We
thanks to the Doppler effect, allowing selection of a particu-take the two modes to be counterpropagatirhg=(—k;
lar velocity class in a velocity distribution profile. =k= w/c) and the atomic center-of-mass velocity todhén

In the present paper we shall study the performances dirder to simplify formulas, we will also takevivg
this velocity selection method. We show that the redistribu-= —v,v5, but this hypothesis is not at all essential: the same
tion of atoms among the velocity classes due to the spontanterference effect can be obtained by adjusting the detun-
neous emission from the intermediate levels does not limitngs. We neglect noninterfering terms corresponding to the
the lowest temperature obtainable, provided that a suffitonization due to the absorption of two photons from the
ciently high ionization rate can be achieved. There is, neversame mod¢8] (see also Sec. VI
theless, another limitation: as the method is based on the As a consequence of these couplings, the atomic ground
irreversible ionization of the atoms, the ions eventually esstate acquires a finite lifetime corresponding to an ionization
cape the volume of interaction with the laser and are lostrate given by[8]
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. class allows us, thus—by subsequent filtering of the ground-
E / h state atoms—to select this particular velocity class.

The ionization being an irreversible procgsge neglect
the usually very small recombination probabilitthe veloc-
ity selection mechanism proposed here is in principle not
limited by spontaneous emission, and is thus able to cool the
system to a temperature below the photon-recoil li(ade
Sec. V).

In order to have an insight into the velocity selection pro-
cess, we consider a simple concrete example: let us take
equal detunings &= 8,=46) and suppose thdis|>T', so
that the population of the intermediate levels is very small,
and the effect of redistribution of atoms among the velocity
classes by the spontaneous emission can be neglected. The
system will thus select the=0 velocity class. Suppose that
the atoms have initially a Maxwellian distribution

2w ]

N
ndv)=;;7%;eXd—%v/J§v&2] 2.3

corresponding to an initial temperatuT@=Mv§/kB (kg is
Boltzmann’s constant antfl the mass of the atomlf the
initial velocity dispersiorvg is small enoughKv <), the
transition rate given by E¢2.1) can be expanded to the
lowest order inv, namely,v?: I'y=G(v/vg)?+O(v?). The

FIG. 1. Level structure and electromagnetic couplings for thetime evolution of the. vel_ocity distribution for the remaining
“atom.” ground-state atoms is given by

N
(8,— 8,—2kv)? n(v,t)= —

[(51+ko)?+T2/4][(8,— kv)?+ T %4]’ vo2T
2.2)

Fy=Tow? exp[—(1+2Gt)(v/V2v0)?], (2.9

showing that the distribution keeps a Gaussian shape. The
kinetic temperaturd (t) of the system is thus reduced by the

wherg we took i.n_to account the D0ppler shiftsKv) of the factor (T/Ty)=1/(1+ 2Gt). The number of remaining atoms
atomic  transitions, and defined the constantat timet is also easily computed

To= (2742 fow?nin,lv, /(hw)|?|vi/(hw)|?, wherefq is
the density of states of the continuum. We also regularized

N
the denominators by adding the terfif/4, which corre- N(t):f n(u,t)dv=—O , (2.5
sponds to add a negative imaginary pait:I'/2 to the en- V1+2Gt

ergy of the intermediate levels in order to take into account ] ] )

their finite lifetimeI 1. This procedure is usual in scattering ffom which one deduces that the relative decrease in the

theory and corresponds to a renormalization of the evolutiof€Mperature is proportional to tisguareof the relat|\2/e de-

operator by taking into account its coupling to the vacuumcrease of the number of atonis(t)/To]=[N(t)/No]*.

modes(which is responsible for spontaneous emisgion These results show that in the case considered here, where
Equation(2.1) shows that the ionization rate can vanish the redistribution of atoms among the atomic velocity classes

(corresponding to an infinite lifetime for the ground sjdfe DY Spontaneous emission is absent, there is no lower limit for
the condition the temperature, and that the process is limited only by the

decrease in the number of remaining ground-state atoms. In
practice, however, one should work closely to resonance in
order to have high ionization probabilities, and the process of
redistribution of velocities by spontaneous emission is no
is satisfied. The vanishing of the transition rate is due tdonger negligible. The influence of this process in the veloc-
quantum interference between the two paths connecting thgy selection method described above will be studied in the
ground state to the continuum via the intermediate s{@ps next section.

This interference is at the heart of the velocity selection

method studied in_ this paper. The atoms in the velocity class ||| EEFECT OF THE SPONTANEOUS EMISSION
v=(6,—61)/2k will stay in the ground state, whereas all FROM THE INTERMEDIATE LEVELS

other atoms will be eventually ionized. Obviously, the veloc-

ity selection is obtained at the price of a decrease of the The level scheme shown in Fig. 1 is, if we neglect the
number of atoms in the ground state. The creation of a coeoupling to the continuum, a usual one for Doppler cooling
herence between the ground state and a particular velociip optical molasses, provided the detunings are negative. The

52—51=2kv (22)
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atoms are cooled by preferential absorption of photons in the an*(v) . r

laser wave counterpropagating with respect to their motion i - N()=5si(v+A)n(v+A)

[9]. This absorption is followed by spontaneous emission in

a random direction, so that after many fluorescence cycles

there is a net reduction of the velocity until the system attains +58(v=A)n(=4A)=T'n"(v). (3.4
an equilibrium temperature called “Doppler limit tempera-

ture” Tp . Itis clear that if the selective ionization discussed 14 first two terms on the right-hand side correspond to the
in the preceding section continues to cool the system belo"é{toms arriving at the intermediate stafes) and |e,), re-

:E'S _I'rtn't’ thg_ etXIsttertlce of (;h';w fluorescdenfi cyq:lets 'r?m\églivmgspectively, whereas the last term describes the depopulation
€ Intermediate states and h€ ground state will te of these levels by spontaneous emission.

the system. In oth_er words, for.t.emperatures below the Dop-" corresponding rate equation can be written for ground-
pler limit there will be competitionbetween the two pro- state atoms
cesses.

We shall deal with the effect of spontaneous emission r r
using a Fokker-Planck type approach. For a rigorous deriva-  p(p)=-— ESl(v)n(v)_ Esz(v)n(v)—l“g(v)n(v)
tion of the Fokker-Planck equation for the optical molasses
and a discussion of the limits of this approach, see Refs.
[10-19. We consider here what we shall call an +
“ionization-assisted” optical molassedAOM), with no
trapping system, so that we do not have to take into account ) )
the atomic positions. We also consider that, once ionized, théhe first two terms on the right-hand side correspond to the
atom escapes the molasses and is lost, thus effectively pfansitions to the intermediate states, the third term repre-
forming the velocity selection. The two laser waves have théents the depopulation due to the two-photon ionization and
same intensityif; =n,), and the dipole matrix elements are the last two terms are du_e to the repopul_atlon of t_he ground
equal for the two intermediate states|v{=|v,|, state by spontaneous emission from the_lntermedlatg states.
lv}]=|v}l), which is the case if the intermediate levels are For the weak couplings encountered in laser cooling, the

magnetic sublevels of the same atomic level. It is useful tcpqulation Of _the intermedia_te states can be ad@abatically
define the resonant Rabi frequency corresponding to the trafliminated, giving an expression far* (v) that is easily ob-

sitions connecting the ground state to the intermediate statd@in€d by putting1* =0 in Eq. (3.4). The substitution of the
resulting expression in Eq3.5) produces the following rate

equation for the ground-state velocity distribution:

N =

n*(v+A)+£n*(v—A). (3.5

Q= nyjvs|=Vn,lv,l. (3.)

, r 4T y(v)
N(v) =~ 7| [51(0) + 55(0) In() +—F—n(v)

For low laser power, the transition rate from the ground state
to the intermediate state;) is given by

—S1(v—2A)n(v—2A)+Sy(v+2A)n(v+2A)]|.

Fi=gsi(v) (i=1,2), (3.2 (3.6

With respect to the velocity, this is a finite difference
wheres;(v) is the so-called “saturation parameter”: equation connecting velocity classea Zpart. In order to
transform this rather awkward equation in a partial differen-
tial equation, we follow the standard procedure used to ob-
B 022 tain a Fokker-Planck equatigfi3], based on the assumption
Si(v)= (6=kv)?+(T/2)% B3 thatthe velocity shifi\ is small compared to the width of the
velocity profile(“limit of small jumps”). This is actually the
) ) case if the kinetic temperature satisfi€s>MA?/kg (i.e.,
where the+ (—) sign on the denominator corresponds t0,ye|| above the photon recoil limitOne can then expand the

mode 1(2). o expressions fos;(v+2A) and n(v+2A) up to the order
Let us denote the velocity distribution for ground-state y 2 leading to the following equation:

atoms at timet by n(v,t) and the velocity distribution for

excited atoms byn* (v,t)=n7 (v,t)+n3(v,t). It turns out n a9 D °n

that only the total number of excited atom% is relevant, — —(vn)+ Mz F_an’ 3.7

due to the fact that the intermediate states are coupled only v

through the unique ground state. This would not be the case . . - .

if the ground state was degenerate. where« is the momentum damping coefficient given by
The velocity shift due to the absorption or the emission of )

a photon isA=#sk/M. The rate equation for the velocity a=— 2% K> ora°/2 (3.9

distribution of the intermediate-state atoms is tfwe drop [6%+(T12)%]? '

in the following the parameter in the arguments of and

n*) andD is the momentum diffusion coefficient
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ro?r an_a(Vn) 4°n

_ 3212 = _
D=k e T2 (3.9 gr v Tz

—gV2n. (3.16
Equation(3.7) is nota Fokker-Planck equation, due to the ~ This equation has an analytical solution. It preserves the

presence of the ionization ter(it does not conserve the total Maxwellian form, thanks to the approximatigB.13, but

number of particles If we drop the ionization term, the re- with a time-dependent width, describing the velocity selec-

sulting equation is the Fokker-Planck equation describing théion effect. Let us write the solution in the form

behavior of the Doppler optical molasses. The corresponding

equilibrium temperature is given ggTp=D/a n(V,7)=f(r)exd - B(1)V]. (3.17
KT s TJ2 Substituting this ansatz back in E(3.16 we find, after

kgTp=— T(F_/2+ ?) (3.10 some algebra, the expressions f¢r) and B(7). The tem-

perature is related to the function B(7):

— -1 ;
from which one can deduce the well-known result that the' (7)/To=[28(7)]" " (the factorTy, is a consequence of the

minimum temperature condition for the optical molasses iSc@lings introduced aboyeOne finds

6=—T'/2 corresponding to the Doppler limit temperature

kgTp=nhI"/2. T(n)=T ,
Let us now consider the complete equation with the ion- (7=To Manh(A7+¢)+1

ization term. The problem in which we are interested here i%vhere we introduced the notations

that of the competition between the velocity selection by

ionization vs Doppler cooling for temperatures of the order A=\4g+1, (3.19

of, or smaller than, the Doppler limit. We will thus suppose

that the system has previously been cooled to the Doppler

limit temperature; we begin with a Maxwellian velocity pro- ¢>=tanh‘1<

file of the form (2.3), with a temperature corresponding to

the Doppler limit: To=Tp, or ve=vp=vVkgTp/M  andT,=T(0). Thetemperature thus tends asymptotically to

=yD/Ma. It is then useful to rewrite E((3.7) in terms of  a stationary value, in contrast with the result obtained in the

the dimensionless scaled variables absence of spontaneous emissfsee Sec. )l This station-

ary value is given by

(3.18

M) (320

N,

V=vlvp (3.11
Tt 2
for the velocity, and ﬁ =371 (3.2)
T=at/iM=t/7, (312 and goes to zero as~L~g~Y2 for large g. The minimum

for the time.r,=M/a can be interpreted as the time con- temperature is thgs not limited b)_/ the spontaneous gmission

St charac.tevrizing the velocity damping under the action O}rom the intermediate levels, provided that the ionization rate

the Doppler cooling alone. As the initial velocity dispersion s high enough. Note, howeve_r, that_the abov_e expression for
i the temperaturelEq. (3.18)] is valid only if To>Tg;.

is supposed small, we consider only the first term in theAS mptotically (r— =), the temperature approaches the sta-
expansion ofl"y in powers ofV, i.e., the term of orde¥? ymp y ' P P

tionary value as

Ly=(a/M)gV?+0(V*), (3.13 - IS 592
N~Tgt ——z e 2. .
where the coefficient¢/M) has been introduced for later SUU(N+1)?
convenience. The dimensionless constaig given by

The time constant for the relaxation of the temperature to-

To[w\21+(268IT)2 vl 2 2 wards its stationary value is\2
|y "7 _ 2| = 27 1 i i
g= ZF( 5 (QIT)? il @ oy [1+(26/T) ]52 . The solution for the functiorfi(7) is

(3.19

f(r)= m\/T—D coshp e seclixnt+¢), (3.23
Ja ¥ To

The physical meaning af becomes clear if one writes the

relation betweer’y andg in the following equivalent form: _ o
whereNj is the initial number of atoms. The total number of

v\%1 4 ground-state atoms at timeis given by the integral over
I'y=9 vo T_+O(U ) (319 v of the velocity distribution and reads

v

. . . . . . . 712,
showing that is a proportionality factor relating the ioniza- _ ————— e"seclirT+ ¢)
tion rate to the inverse of the characteristic time constant N(7) =Nocoshp y1+htanhp JI+Nanh a7+ ¢)

7,=M/a through a particle-dependent factor equal to the (3.24

ratio of the particle’s kinetic energy to the equilibrium Dop-

pler thermal energy. Asymptotically, the number of ground-state atoms goes to
In these scaled units ER.7) takes a simpler formi14] zero as
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1/2 1
wd--
(3.25 g 7

showing that the time constant for the decreasing of the num-
ber of atoms is\ —1/2. For large ionization rateg& 1 or,
equivalently,A>1), it can be seen from the asymptotic ex-
pressions above thatTE Tg)/Tp~[N/Ny]?, in analogy
with the result found in the case where there is no velocity
redistribution by spontaneous emissi@ec. I). \
Concluding this section, we can resume our main results: 0 \ | ) I
a Fokker-Planck-like equation has been written and solved 0 100 200 300 400 500
describing the behavior of an ionization-assisted optical mo- g
lasses in the limit of weak laser powers and low velocities.
The solution shows that due to the velocity redistribution by  FIG. 2. Dependence of the stationary temperature on the ioniza-
spontaneous emission the temperature tends to an asymptotiin rate. These data correspondde —I'/2 andQ=T". The full
value that is roughly proportional to the inverse of the squardine is a plot of Eq(3.21), whereas the individual points correspond
root of the ionization strength. In the next section we will to the Monte Carlo simulation.

compare the results of the above theory to Monte Carlo ) )
simulations of the behavior of an IAOM. detunings the Doppler process leads to a nonstationary heat-

ing of the system, but the Monte Carlo simulations have
shown that the selective ionization is still able to cool the
system below the Doppler limit.

The Monte Carlo results have an uncertainty of about

In order to verify the theory developed in the preceding= 10% essentially due to the relatively small number of at-
section, in particular, the approximations made, we peroms(a few hundredsthat can be dealt with in reasonable
formed Monte Carlo simulationfl5] for the IAOM. We  computing times. This is the cause of the dispersion of the
begin with a Maxwellian distribution of atoms a,=T,.  Points seen in Fig. 3.
For each atom in the ground state moving with a given ve- As mentioned above, the main limitation of the IAOM is
locity v(0) inside the distribution profile, we calculate the the decrease of the number of ground-state atoms as the tem-
transition rate§’; andT', for absorbing a photon in modes 1 Perature decreases. In Fig. 4 we plotted the number of re-
and 2[given by Eq.(3.2] and the ratd’ for the two-photon ~ maining atoms after a time,=2\"" as a function of the
ionization[given by Eq.(2.1)]. The probability for the atom temperature. As we have seen, the time constant for the tem-
to stay in the ground state thus decreases@s! with  perature relaxation is (@' [see Eq. (3.22], and
I=r+r,+ Fg' We then p|C|( a random number T(TO)/Tst%104 A diminution of a factor of 50 in the tem-

0=<r=1 and consider that the atom will leave the groundPerature(which is the typical rate between the Doppler and

1+ \tanhgp

N(7)~No(1+e™2")| ——~

(T/Tp)st

IV. COMPARISON OF THE THEORY
WITH MONTE CARLO SIMULATIONS

state after a time given by the photon-recoil temperatyrean thus be obtained at the
price of a reduction of a factor of 20 in the number of atoms.

Inr Concluding this section, we can say that there is a good

t:_r_{ (4.)  agreement between the theory introduced above and the

Monte Carlo simulations, describing the IAOM below the

We then compare the normalized probabilities=T,/T, ~ DOPPler limit temperature.

with i=(1,2,0) to a new random value’ in order to decide

what kind of transition the atom will make. If the transition 0.6 T S T T
is the ionization, this atom is eliminated from the distribu- M o
tion. If it is a transition to an intermediate state, we compute 0.5 | o @ o 6 o T
its new velocity:ww (t)=v(0)* A, taking into account the ve- 04 L > @ 52 o |
locity shift due to the absorption of a photon in mode 1 or 2. e ¢ o N
An analogous procedure is applied to the excited atoms in & 03 A
order to decide when they will decay by spontaneous emis- &
sion to the ground state emitting a photon in a random direc- 02 .
tion and to correct their velocities. After a few thousands of
fluorescence cycles, we approach the stationary condition. 0L T
We show in Fig. 2 the dependence of the stationary tem- 0 L L L L
perature on the ionization strength paramegerThe indi- -10 -8 -6 -4 -2 0
vidual points correspond to the results of the Monte Carlo é/r

simulation and the solid line is the plot of E(.21). The

results are seen to be in very good agreement, even for high F|G. 3. Dependence of the stationary temperature on the detun-

values of the ionization rate. ing. Q=I',g=100. The full line is obtained from Eq<3.21),
Figure 3 shows the dependence of the stationary tempergs.19, (3.14; the individual points correspond to the Monte Carlo

ture on the detuning, for negative detunings. For positivesimulation.
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- . on(V,
Nx+Nx=f dVVZ(a—TT). (5.5

One can then substitute the kinetic equat{brl) into these
expressions. The terms containing partial derivatives with

i: respect to the velocity can be integrated by parts, and the
= following equations are obtained for the time evolution of
X andN:
N=—gxN+s (5.6)
1 1 1 1
0 0 0.2 0.4 0.6 0.8 1 and
T(r)/Tp Nx=—g((VH—x?)N—2Nx+2N+s(1—x). (5.7)

FIG. 4. Number of remaining atoms at timg=2\"' as a  This equation shows that, due to the presence of the ioniza-
function of the temperature. tion term, the equation fofV2) involves(V#). Let us thus

define the quantity possibly depending om andg
V. IONIZATION ASSISTED OPTICAL MOLASSES

WITH A SOURCE OF ATOMS <V4>

2= 7y (5.9

As we have seen in Sec. lll, the IAOM leads to a station-

ary temperature below the DOF_’?}? equilibrium temperatur&ye now search for the stationary solutions of E@s6) and
that is roughly proportional tg~ . On the other hand, it (5 ) The quantityz(r), being the ratio of two mean values,

has been seen that the number of cold atoms tends asymgyiqiq also approach a stationary valug if the velocity
totically to zero, which constitutes the main limitation of the distribution does so. We thus keepas a free parameter

proposed method. In the present section we shall study “'Vﬁside the resulting equations. We find, fpr-2
case where “new” ground-state atoms are continuously in- ’ ’

jected into the system in order to replace the atoms lost by -2 89z, |2

ionization. We suppose that these new atoms have been pre- Xst:ﬁ 1+11+ (9—2)2 (5.9

viously cooled by a standard Doppler molasses to the Dop- !

pler temperature. and

Within this hypothesis, the kinetic equation for the IAOM

can be easily generalized by adding a source term N = 257 1 -

2 *g-2 14|14 295 r’z’ (510
an aVn) d“n 204 S oV 5.1 (g—2)2

=T gV ,
or v av2 9 =

where we note thatg; does not depend os This result is

wheres is a scaled source intensifin usual unitss is the ~ NOt surprising: the original kinetic equatid.1) can be di-
atom flux per velocity damping time, =M/ a). vided by s, which corresponds to a renormalization of the

We did not find an analytical solution for this equation, Velocity distributionn(V, ) —n(V, 7)/s that does not affect
but a certain number of relevant information can be obtained® mean valuesThis means that we can have as many at-
by deriving evolution equations for the temperature and th®MS as we want in the stationary state (taking a large

total number of atoms. The total number of ground-state ateNough source term) without changing the limit temperature
oms at timer is given by On the other hand, the time necessary to attain the stationary

state will be correspondingly increased.
Asymptotically @— ), Xst— 1/z¢;. Thus, the asymptotic
N(r):j dvn(V,7) (5.2 value of the temperature dependsgpanly implicitly, which
means that this dependence is due to the fact that the station-
ary velocity distribution changes shape with For a

and thus Gaussian-shaped distributias 3 regardless of the value of
) an(V,7) the velocity dispersion.
N:f dav——-, (5.3 The important point now is that the stationary solution for
ar the total number of ground-state atoms does not vanish as

. . ] ] was the case in the absence of a source of new atoms:
whereas the mean quadratic velodityat is equal tal/ T in Ng—s/(gzs). Our main problem is thus to determine the

our normalized unitsis dependence df, on g.
1 In principle, there is no general relation betwe&ff) and
Y 2 (V* for an arbitrary distribution. We thus used the Monte
X(1)=(V7) Nf dvVin(v,n) 64 Carlo method discussed in Sec. IV, in which we have in-

cluded the source term, to determine numerically the relation
leading to betweere,; andg. It turns out(see Fig. % that the numerical
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20 T T T I 0.1 T T T T

0.08 |- -

Zst
(N/No)st

0
0 1 1 1 J 1000 2000 3000 4000 5000
0 1000 2000 3000 4000 5000

g

FIG. 7. Comparison between the stationary-state number of at-
oms obtained from Eg$5.10 and(5.11) and the numerical simu-
lation. §=—T/2, Q=T/2, g=100. The source intensity is 40
atoms/s.

FIG. 5. Dependence ofy=(V*)¢/(V?)Z on g. The fitting
curve iszg=3+(2/3)g*. The increasing fluctuations of the nu-
merical results for highy are due to the decrease in the number of
atoms at the stationary statef. text). These data correspond to
6=—T12, Q=T/2, andg=100. The source term corresponds to
10° atoms/s. The full curve corresponds to Eg11) and the points
to the Monte Carlo results.

same for the number of atoms relative to the initial value
No. Once again there is a good agreement with the simula-
tion.

. ) . A good parameter characterizing the performance of the
results are correctly fitted by the following relatigremem-  ygjocity selection is the phase-space density defined as the
ber thatz=3 corresponds to a Gaussian distribufion ratio of the number of atoms per unit velocity interale

are supposing that there is no trapping effect, so that the

5 =34 213 (5.11) spatial coordinates are not affected by the velocity selection
st 39 ' procesy that can be approximated by
As one sees in the figure, there is an increasing uncer- ~l~£ (5.12
tainty on the results of the numerical simulation when the AV \& ’

ionization rate increases. This is due to the decrease in the

number of remaining ground-state atoms when the stationartWe can thus calculate the time derivative of the phase-space

state is attained, for high ionization rates. As we have mendensity

tioned before, these results are independent of the value of _

the source intensitg. This has been confirmed by the nu- . Ns X

merical simulation. P=K\N TOXT5%
Once we have determined the dependenceg,ain g, we

can insert this expression back in E¢5.9) and(5.10. We  where we used Eq5.6) in order to eliminate the time de-
thus see that the temperature goes asymptoticgy€) as  rivative of the number of atoms. One sees that the phase-

g~ % We plotted in Fig. 6 the dependence of the stationaryspace density wilincreaseas the temperature diminishes
temperature on the ionization rate. The curve fits rather welprovided

the results of the Monte Carlo simulation. Figure 7 shows the

: (5.13

—>gX+ = —7_ (5.19

As the temperature tends to its stationary value, the second
term in the right-hand side tends to zero, and the lowering of
the temperature tends to decrease the first term, so that it
becomes easier and easier to fulfill the density-increasing
condition. For example, let us take=10%. Thenx,~0.02
which is of the order of the photon-recoil temperature; the
density increasing condition is fulfilled 8~200, which, in
usual units, means that in order to havé® Hloms in the
stationary staté€the usual value obtained with other meth-
1000 2000 3000 4000 5000 ods, one must have a source term of about 0™ atoms
g per secondwe taker,=1 mg, which is a realistic flux in a
laser-cooled atomic beam experiment.
FIG. 6. Comparison between the stationary-state temperature Concluding this section, we can say that the “source”

obtained from Eqs(5.9) and (5.11) and the numerical simulation. scheme for the IAOM shows interesting characteristics: al-
5=-T1/2, Q=T/2, g=100. The source intensity is 4@toms/s.  though the stationary value of the temperature decreases with

(T/Tp)st
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the power 1/3 of the ionization rate instead of 1/2 as was the
case in the absence of the source, the number of cold atoms
does not vanish, but tends to a stationary value that decreases
with g~23 We have also shown that the condition for an B® —————
increasing of the phase-space density during the velocity se-
lection process can be fulfilled in realistic conditions.

VI. TWO-DIMENSIONAL SCHEME
FOR GROUND-STATE DEGENERATE ATOMS

The method proposed in this paper is in principle able to
cool atoms to temperatures comparable or even smaller than
the “photon-recoil energy limit"—naturally at the price of
either an important decrease in the number of atoms or of
coupling the velocity selection scheme to a relatively bright
source of Doppler-temperature atoms. These limitations can
be overcome by starting with the atoms close to the photon-
recoil energy in a molasses presenting the so-called “Sisy-
phus effect”[1,16,17. Nevertheless, the analysis presented v
here does not apply to such a molasses, because the Sisyphus »
effect exists only for ground-state degenerate atoms. More-
over, the Fokker-Planck type approach leads, in the case of a
degenerate ground state, to coupled equatjd6$ that are s o X
difficult to solve, although the inclusion of the ionization
effect turns out to be straightforward. Also, the numerical
analysis of such problems involves the using of quantum T
Monte Carlo technique§l7]. For these reasons, we shall
restrict ourselves in the present section to proposing schemes FIG. 8. Two-dimensional arrangement for the combination of
for combining the present velocity selection method withvelocity selection by ionization with Sisyphus-type mechanisms in
Sisyphus-type mechanisms for a ground-state degeneratgely=1—J.=1—J=0 level structure.
atom. We shall study the destructive interference conditions,
without giving a quantitative analysis of the performances oflogical cases,” in which there is no Sisyphus effect, that
such system; a thorough semiclassical analysis will be pubshould be avoided. In general, it is easier to obtain Sisyphus
lished elsewherg18]. configurations in two or three dimensions. For more details,

An interesting ground-state degenerate system is &ee Refs[16,19. For simplicity, we shall call, in what fol-
Jg=1 atom with aJ.=1 intermediate stateJ(being the lows, “Sisyphus mechanisms” both the proper Sisyphus
angular momentuim which is the case of metastabtele* mechanism obtained with counterpropagating, orthogonally
or 8’Rb. We show in Fig. 8 the allowed transitions and thepolarized, laser waves, based on light-shift effects, and the
respective Clebsch-Gordan coefficients for such a systen@lignment, motion-sensitive, mechanism obtained in
This scheme presents a two-photon coupling tdistrete ¢ — o~ scheme$1].
upper level, itself coupled to the continuum, instead of a Many different schemes can be conceived. The important
direct coupling to the continuum. This has many advantagepoints are:(1) One must have polarization-alignment gradi-
[8]: first, it allows one to get rid of the possible paths leadingents in order to obtain the Sisyphus effe(?) one must
from the ground state to the continuum via the absorption otombine circularly and linearly polarized beams in order that
two photons in thesamemode, which are not subjected to the ionization be effective for all ground-state sublevels; and
interference effects, simply by choosingga=0 upper level, (3) one must find destructive interference conditions in the
as shown in Fig. 8. Moreover, it allows us to turn the ion-two-photon transitions able to select the desired velocity
ization on and off by switching the ionizing laser; one canclass. As an illustration, consider, for example, a scheme
thus wait for the system to attain the Sisyphus equilibriumwhere one uses " — o~ counterpropagating waves along
temperature before switching on the ionization. It is easy tdhe x axis and orthogonally polarized counterpropagating
understandand this can be rigorously demonstrafdd])  waves along thg axis (Fig. 8. Themy=0 atoms interact
that if ionizing coupling between the upper leys) and the  with the 0" — o~ waves and velocity selection along tke
continuum is high enougti.e., if the ionization rate is large axis is performed as before. Moreover, the selectge-0
compared to the natural width of the upper lgv@ince the atoms can be optically pumped in the other sublevels. The
system arrives on the upper level it will have a great prob-atoms in themy;=*1 sublevels can also make two-photon
ability of being ionized, and the dynamics of this system will transitions by absorption of one photon from one of the
be much like that of the system shown if Fig. 1. o-polarized,x-propagating waves and another photon from

We propose here a two-dimensional scheme allowing @ne of the w-polarized, y-propagating waves. In order to
combination with Sisyphus mechanisms. It is worth mentionstudy the interference conditions, consider, for definiteness,
ing that Sisyphus-type mechanisms in one dimension for ¢he case of then,=1 level. We show in Fig. 9 the Feynman
J=1—J=1 transition present a certain number of “patho- diagrams for all possible two-photon processes starting from




54 ATOMIC-VELOCITY CLASS SELECTION USING ... 4257

Furthermore, these conditions, that mix theandv, com-

me =0 ms=0 ponents of the atomic velocity, are simultaneously satisfied
for zero velocity atomsand only zero velocity atomsf the
detunings are such that,,=é6,=—45,-. It can be easily
Ltzi H{ shown that the same condition is valid for tg= —1 level.
The o-polarized waves should thus have opposite detunings
me =1 me =0 with respect to ther-polarized waves. It can be thus neces-

sary to readjust the detunings at the same time as the ionizing
laser is turned on, once the system attains the Sisyphus equi-
librium temperature. Note, moreover, that this scheme can be

T mg =1 o mg =1 extended to three dimensions simply by adding a third
couple of " —o~ or orthogonally polarized waves along

— SR the z axis. _ _ . o
o S Before concluding this section, let us note that other simi-
lar two- or three-dimensional schemes can be conceived; for
example, one can use counterpropagating— = waves
ms =0 ms =10 along each axis. This system also satisfies the three condi-
tions mentioned above: it leads to polarization gradients, it
allows optical pumping among the various ground-state sub-
1’]{ LI{ levels, and one can easily work out the destructive interfer-
ence conditions for selecting=0 atoms.
me =1 me =0
VII. CONCLUSION
- The aim of this paper was to study a process of velocity
/FY/ Mo =1 :j'j my =1 class selection using quantum interference in the two-photon
ionization of an atomic ground state. In particular, we stud-
Ny N ey ied the effect of the velocity redistribution due to spontane-
Sar vy Op=—ky=ve ous emission from the intermediate atomic levels in a

“ionization-assisted” optical molasses. The main result we
FIG. 9. Feynman diagrams corresponding to the two photorobtained is that the temperature tends to a stationary value, in
processes starting from the sublewg)=1 of Fig. 8, with the cor-  contrast with the case where spontaneous emission is negli-
responding transition amplitudes. gible. This stationary value is asymptotically proportional to
the inverse square root of the ionization strength; it is thus in
this level, together with the related probability amplitudes.principle possible to have arbitrarily low temperature if the
One sees that there are four possible paths, leading to twionization strength is high enough. We saw, however, that
different final states: the atom can absorlwa and a=  due to the irreversible nature of the ionization process, low
photon, and the temporal order of these absorptions can demperatures correspond to small numbers of remaining at-
exchanged. This corresponds to the two top diagrams in Figams, and this is the major limitation of this method. We have
9, that lead to thesameglobal (atom+field) final state. The also shown that this limitation can be eliminated by using a
two bottom diagrams are analogous, except that the linearlgource regime in which “new” atoms at the Doppler tem-
polarized photon comes from the’ wave, and leads to a perature are continuously injected into the system. This leads
final state distinct of the preceding one. The ionization ratgo a stationary state at a higher temperature but with a con-
for this state thus consists of four terms interfering two bystant number of ground-state atoms. Moreover, we showed

two that one can find realistic conditions in which the cooling by
velocity selection is accompanied by an increasing of the
— [n—-n 1 1 2 phase-space density.
Iy(my=1)=Tw? ”2 u T —" We also proposed a generalization of the velocity selec-
m— Raly o Ko Ux tion by quantum interference for ground-state degenerate at-

2 oms, and we are presently working on a semiclassical analy-
sis of such a system. It is, however, worthwhile to note that
the photon-recoil energy is the limit of validity of the semi-

(6.2 classical approaches, and a full quantum analysis would be

1 1

Na-Ngr n
571" + kﬂ.rvy 50.7_ ko-*UX

2

desirable.
One then sees that the ionization rate vanishes if the atom The main difficulty with the present method is naturally
satisfiestwo destructive interference conditions. the depopulation of the ground state by the ionization, that

imposes the use of a high initial atomic density or the cou-
pling of the system to a relatively bright source of Doppler-
temperature atoms. However, let us mention that the other
methods that have been experimentally demonstrated to pro-
O T Kpy=— 0845 +Ks-vy. (6.2b duce sub-recoil temperatures are also plagued by consider-

8n—Kyoy=—8,-+Kyvy, (6.2a
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able losses in the number of cooled atoms. In VSCPT, for On the other hand, the method proposed here is very ro-
example, it can be shown theoretically that the probability ofbust: it is insensitive to collisions, it does not depend on
trapping an atom increases linearly with the interaction timehighly stabilized lasers and the ionizing laser powers, al-
[20], so that eventually all atoms are trapped. However, thishough high, are available from commercial lasers. More-
method is based on the creation of a ground-state quantugyer, the crucial factog (the ionization strengthis propor-
coherence that is very sensitive to external perturbations, sgynal to (Q/6)? [Eq. (3.14)]. This means that it can be very
that the efficiency of the trapping is limited by, e.g., colli- high even for modest laser intensitiéhat are proportional
sions with untrapped atoms. With the Raman method, th¢y ()2) by choosing a small enough detunitguasiresonant
efficiency of the cooling is limited, among other factors, by process In this case, the maximum value gfis limited

the quality of the shaping of the laser pulses necessary tgnly by the natural lifetime of the intermediate level.
avoid off-resonant excitations. Subrecoil temperatures have

been obtained in this way together with an increasing of a
factor of about 20 in the phase-space denidth]. This is, to

our knowledge, the best performance yet obtained. Finally,
in evaporative cooling experiments, that are based on selec- The authors gratefully acknowledge useful discussions
tive ejection of hot atoms by elastic collisions, there is alsowith Y. Castin. Laboratoire de Spectroscopie Hertzienne is
an important decreasing in the number of trapped atomdJnite de Recherche assoa@ CNRS. Centre d'ades et de
Hulet and co-workers have observed a number of trappeBecherches Lasers et Applications is supported by the Min-
atoms proportional ta ~*2 [6]. Such performances are ar- istere de la Recherche, B®n Nord—Pas de Calais, and
guably attainable with the source version of the presenFonds Europeen de ‘Beloppement Eonomique des Re
method. gions.
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