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Measuring the reabsorption cross section of a magneto-optical trap
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Magneto-optical traps have been used for several decades. Among fundamental mechanisms occurring in
such traps, the magnitude of the multiple scattering is still unclear. Indeed, many experimental situations cannot
be modeled easily, different models predict different values of the reabsorption cross section, and no simple
experimental measurements of this cross section are available. We propose in this paper a simple measurement
of this cross section through the size and the shape of the cloud of cold atoms. We apply this method to traps
with a configuration where theoretical values are available and show that the measured values are compatible
with some models. We also apply the method to configurations where models are not relevant and show that the
reabsorption is sometimes much larger than the usually assumed value.
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I. INTRODUCTION

The magneto-optical trap (MOT) is today an essential tool
in experimental atomic physics. A MOT produces ultracold
atoms which can be used in numerous experiments: MOTs are
used, alone or with further cooling steps, to study quantum
chaos [1], Anderson localization [2], and plasma instabilities
[3,4]; to produce ultraprecise atomic clocks [5]; to obtain
cold molecules [6]; and to carry out many other studies.
In most cases, detailed knowledge of the cloud properties
is not necessary. However, some studies focus on the MOT
itself because it appears to be a potential model system for
a wide class of physical problems, described by Vlasov-
Fokker-Planck equations [4]. In this context, the study of the
well-known instabilities experimentally observed in the MOTs
is very interesting. These instabilities appear, for example, as
a periodic motion of the center of mass of the cloud [7] or as
an oscillation of the number of trapped atoms [7,8].

The study of these dynamics makes developing models
much more elaborate than those describing only a single
atom necessary. Indeed, it was shown that these instabilities
are a collective behavior, and thus, models must take into
account the interaction of each atom with all the other
ones. Therefore, the only possible approach is to introduce
macroscopic collective quantities, as in thermodynamics.

To introduce these quantities, let us remember that the cloud
of cold atoms results from the interactions of the atoms with the
laser light. The basic interaction is the absorption of a photon
by an atom, followed by a spontaneous emission process.
Depending in particular on the cloud density, the emitted
photon can possibly undergo several cycles of absorption and
emission before escaping the cloud: it is multiple scattering.
The final cloud of cold atoms is the result of the equilibrium
between the trapping force (induced by the exchange of
momentum during the diffusion cycle), the shadow-effect force
(induced by the absorption of the beam through the cloud),
and the multiple-scattering force. As we are interested in the
collective response of the cloud, we adopt a global formalism
to take into account the interactions between all the atoms
inside the cloud. Therefore, the amplitude of the forces will
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be expressed in terms of cross sections: σL describes the
absorption from the laser beams and σR is the reabsorption of
scattered photons. Knowing these quantities is thus essential to
model accurately a MOT, in particular the shape and dynamics
of the resulting atomic cloud. Moreover, these cross sections
play a key role in the analogy with plasma physics because
the effective charge involved in the Coulomb-like interaction
between cold atoms depends on their ratio [9].

These collective cross sections depend on the detailed
mechanisms involved in a MOT, which are rather complex.
Taking into account the exact distribution of the atomic
levels and the interaction of the atoms with all the laser
beams would lead to a very complex set of equations. As
MOTs are operated with high laser intensity in the usual
experimental configurations, it is not necessary to take into
account sub-Doppler mechanisms. But even with such a sim-
plification, the calculation of the cross sections requires some
extra approximations. For example, although experimental
MOTs are three-dimensional systems, most models consider
a one-dimensional MOT in order to determine the atomic
response inside the cloud, without taking into account the
cross saturation, except in [10]. Thus, different models lead
to different predictions. This is not a big deal concerning σL

because simple absorption measurements lead to this quantity,
and thus, it is easy to validate or invalidate a given model. On
the contrary, no simple way to measure σR has been proposed
until now. So theoretical predictions have never been validated
by experimental measurements, and the σR values found today
in the literature are still questionable.

We propose in this paper a method to measure the
reabsorption cross section in a magneto-optical trap. We apply
this method to a cesium trap and obtain values of σR for
different sets of laser parameters. We compare these values
to different models.

II. THEORY

We consider here a MOT in the usual σ+-σ− configuration.
Each of the three arms of the trap consists of a pair of counter-
propagating laser beams characterized by their intensity and
their frequency. A pair is obtained by retroreflection of an
incident beam. The beam intensities are I+ for the incident
beam and I− for the retroreflected one, while their frequency
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is given through the detuning � between the laser frequency
and the atomic transition.

As discussed above, we want here to describe the collective
behavior of the atomic cloud. This requires two steps of
calculation: the first one consists of describing the global
behavior of the cloud through collective cross sections; the
second one is the determination of the expressions of these
cross sections. Only the second step requires us to detail
the energetic structure of the cold atoms and could lead to
different results following the degree of complexity chosen for
the atomic structure. On the contrary, the relations established
in the first step will be independent of this atomic structure.

Let us first establish the equations for the collective behavior
of the atomic cloud. As discussed in the Introduction, the sta-
tionary cloud results from the equilibrium between three forces
acting on the atoms. These forces have been expressed in nu-
merous studies, with more or less approximations [4,9,11–13].
However, all these models deal with the same variables and the
same parameters. The first force is the trapping force produced
by the laser beams and the Zeeman shifts induced by the
magnetic field. It is a restoring force, characterized by the
spring constant κ . The two other forces are collective forces.
The shadow-effect force is due to the absorption of the laser
beams all along the cloud, leading to a local imbalance of
the laser beam intensities. Thus, this force depends on the
absorption cross section σL. Finally, the multiple-scattering
force is induced by additional scattering of photons, and so
it depends on the reabsorption cross section σR . The first two
forces compress the cloud of atoms, while the latter causes it
to expand. The size of the obtained atomic cloud is thus the
result of an equilibrium between these three forces.

To study the equilibrium, we use an approach similar to
that in [9] which assumes that the temperature of the cloud is
zero. The main assumption in this model is that a photon is
rescattered at most once before escaping the cloud. Contrary
to [9], we consider the usual anti-Helmholtz configuration for
the coils creating the magnetic field. Such a field is zero at the
point defined as the center of the trap, and it can be assumed
to be linear along each direction. We take into account the fact
that the magnetic-field gradient along the coil axis is twice that
along the perpendicular directions. So the spherical symmetry
used in [9] is broken, and the cloud shape must be modeled as
an ellipsoid.

The determination of the stationary density n does not
require knowledge of the forces. Indeed, the collective forces
depend on the shape of the cloud, while their divergences do
not. The vanishing of the divergence of the total force (which
is zero at equilibrium) gives us a constant atomic density.
The results from [10], where a more general anisotropic
configuration has been considered, can be applied to the
present situation and give

n = 2cκ

3I+ σ 2
L (S − 1)

, (1)

where S = σR/σL is the cross-section ratio and c is the speed
of light. Note that as the quadrupolar magnetic field is taken
into account, this expression differs slightly from that in [9,11].

We can improve this description of the MOT by calculating
the expression of the three forces. The trapping force has

the usual form and takes into account the anisotropy of the
magnetic-field gradient. The shadow-effect force has the same
expression as is [9]; the absorption is assumed to be linear.
The net multiple-scattering force is calculated as the sum
over the cloud of all the Coulomb-like atom-atom interactions
associated with a scattering process. Reference [10] shows how
to calculate this force for an ellipsoidal cloud, with half widths
L‖ and L⊥ along the coil axis and in the transverse plane,
respectively. A geometric parameter A, depending only on the
ellipticity ε = L⊥/L‖ of the cloud, appears in the expression
of the total force due to multiple scattering:

A = ε2

ε2 − 1
β,

(2)

β =
⎧⎨
⎩

1 − 1√
1−ε2 ln

∣∣ 1+√
1−ε2

1−√
1−ε2

∣∣ for ε2 > 1,

1 − 1√
ε2−1

arcsin
(√

ε2−1
ε2

)
for ε2 < 1.

Note that this geometrical factor A does not depend on the
total number of trapped atoms. Indeed, when the number of
atoms varies, both widths change. But as the atomic density is
constant, the ellipticity is conserved.

We have thus the expressions of the three forces along the
coil axis. As we are interested in the steady state, the sum of the
forces vanishes. The equilibrium of the forces gives another
condition on this parameter:

A = 1

2

(
1 − 1

3S

)
. (3)

Note that these relations are valid for both retroreflected
and independent MOT configurations [10]. For the sake of
completeness, let us mention that for a configuration with
retroreflected beams, the equilibrium of the forces also gives
us access to the cloud displacement due to the shadow effect.
This displacement is global and depends only on the shadow
effect: it gives no information about multiple scattering.

From the previous equations, it is easy to find that ε is
bounded. First, the atomic density is a positive quantity so
that, in Eq. (1), σR has to be larger than σL (S > 1). It follows
from Eq. (3) that A > 1/3. From the same equation, we also
find that the maximum value of A is 1/2 (when S → +∞).
This leads to

1 < ε < 1.81. (4)

Thus, the atomic cloud shape of the usual MOT appears to
be always oblate. A spherical cloud corresponds to an infinite
density and so is not a physical solution. We also point out an
upper limit to the ellipticity which corresponds to σR � σL.

Figure 1 shows the cross-section ratio versus the ellipticity
for all possible values: the more elongated the cloud is, the
more probable the reabsorption is. This result is quite different
from the one predicted for the temperature-limited regime in
which the ellipticity of the cloud is constant and equal to

√
2

[12]. In the multiple-scattering regime, the ratio S and the
cloud ellipticity depend a priori on the laser parameters.

Now that we have characterized the cloud through the
cross sections, we have to calculate them as a function of
the laser parameters. As pointed out above, this calculation is
rather complex. The atom must be modeled with a particular
atomic structure from which the overlap between the emission
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FIG. 1. Evolution of the cross-section ratio inside the predicted
range of ellipticity values.

and the absorption spectra of a cold atom can be calculated.
Several authors figured out theoretical expressions of σR

in the context of Doppler cooling theory [4,9,11–13] but
with different approaches. In [9], a fit of single cloud size
measures is performed for only one set of parameter values.
In [11] an approximated analytical calculation is done, while
in [4,12,13] the dressed-atom picture (DAP) is used [14]. In
all these studies, a two-level atom is considered, except in
[4], which considers a three-level atom. These calculations
take into account the saturation by the two counterpropagating
beams, requiring us to introduce the total Rabi frequency � =
�

√
(I+ + I−) /2Isat, with Isat being the saturation intensity

(Isat = 1.1 mW/cm2 for Cs) and � being the natural width of
the transition.

Within the DAP, the secular approximation limits the range
of parameter values to �2 + �2 � �2. But even with such
a simplification, the expression of σR remains heavy. Table I
summarizes the expressions obtained by these previous studies
in the two limit cases where the laser intensity is much larger
than the detuning and vice versa. On the one hand, these two
situations (|�| � � � � and � � |�| � �) give simple
asymptotic expressions. On the other hand, they represent
the usual experimental parameters. Note that the values of
parameters in [9] do not fit these two limit cases, and the
results from [11] do not seem to be relevant. The expressions

TABLE I. Comparison of theoretical expressions for the
cross-section ratio for the two limit cases, � � |�| � � and
|�| � � � �.

Reference � � |�| � � |�| Method

phenomenological calculation
[11] 1 2

two-level atom

curve fitting
[12]

�2

2�2

3�2

�2 DAP two-level atom

analytical expression
[13]

�2

3�2

�2

2�2 DAP two-level atom

analytical expression
[4]

�2

6�2

�2

2�2 DAP three-level atom

derived from the DAP give the same dependence on the laser
parameters but with different numerical factors.

III. MEASUREMENTS

Equations (2) and (3) link the cross-section ratio with the
ellipticity. As ellipticity can be measured experimentally, we
have a way to determine σR experimentally and to compare
this measure to the theoretical predictions.

Our experimental setup is described in [7,15–17]: we
use the usual MOT in which each arm is formed by the
retroreflection of an incident beam. All incident beams have the
same intensity. To guarantee repeatability and reproducibility
of the measurements, special care was given to the technical
parameters of the MOT in order to obtain homogeneous clouds.
In particular, we used a single-mode optical fiber to clean
the transverse profile of the beams. Moreover, we modulate the
relative phases of all the beams to avoid possible interference
patterns. The modulation frequency (>1 kHz) is chosen to
be larger than the collective atomic response frequencies, so
that the intensity is averaged. Finally, we carefully align the
trap beams because the shape of the cloud is very sensitive
to this alignment. Contrary to a MOT with six independent
beams, our retroreflected configuration allows us to achieve
accurate beam alignment (typically 0.02 mrad).

In order to measure the ellipticity, we record the cloud
fluorescence with a CCD camera, the optical axis of which is
perpendicular to the coil axis. In that way, we obtain pictures
showing a two-dimensional (2D) projection of the ellipsoid.
The pictures are fitted on a 2D Gaussian, giving us the semiaxes
L‖ and L⊥ of the ellipsoid. The exact relation between the
fluorescence and the atomic density is not trivial. However,
we are not interested in the density; we just want to compare
the size of the cloud in both directions. A typical experimental
measurement consists of recording the cloud sizes as a function
of � and repeating this sequence for different values of �. For
each set of parameters, we record ten pictures in order to
improve the precision and to evaluate the standard deviation.

This method has a few limitations. It requires a good signal-
to-noise ratio to monitor the cloud with a camera, which is not
the case for dilute clouds, i.e., for large detunings or low laser
intensities. On the other hand, in an asymmetric configuration
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FIG. 2. Measures of the cloud ellipticity for 117 different values
of the MOT parameters. The theoretical range is shown in gray.

053425-3



ROMAIN, LOUIS, VERKERK, AND HENNEQUIN PHYSICAL REVIEW A 89, 053425 (2014)

2.5

2.0

1.5

1.0

ε

-10 -8 -6 -4 -2

Δ/Γ

FIG. 3. Evolution of the ellipticity ε vs the laser detuning � for
I+ 	 3.6Isat. The dashed lines show the theoretical limits of ellipticity
values (1 < ε < 1.81). The error bars represent the standard deviation
from the ten pictures.

such as the one used here, the shape of a thick cloud is degraded
by the shadow effect. This occurs typically when the laser
is tuned close to resonance. This issue does not exist for a
MOT obtained with six independent beams. To sum up, we
can expect in our case good-quality measures for intermediate
detunings.

We first check the predicted range of ellipticity values.
We measure the cloud sizes for almost 120 different values
of (�,�). Figure 2 shows all the measured values and how
often they have been measured. The result is in rather good
agreement with the theoretical range: about 90% (if we
consider the error bars) of the measured ellipticities are inside
the predicted range. No prolate cloud is observed.

Figure 3 shows the typical evolution of the ellipticity as a
function of the detuning. In this example, the minimum value
of the ellipticity is 1.4 and is measured around � = −6.5�.
We deliberately show here all the recorded points. However,
let us remember that close to resonance, points are not relevant
due to the shadow effect. We checked that all points with an
ellipticity larger than 1.81 in Fig. 2 correspond to this situation.
Thus, if we consider only points for which the method is valid,
we find that all the measured ellipticities are smaller than the
theoretical limit.

Strictly speaking, the two limit cases considered in Table I
cannot be satisfied with our experimental parameter values.
However, for large enough � values, we approach the
conditions |�| � � � � . Moreover, as the measurement
quality is poor for very large detunings, we retain only

TABLE II. Comparison of the experimental determination of
S with the predictions. For different intensity values, we give the
average ellipticity ε measured for a range of large detunings, the
deduced cross-section ratio S, and the theoretical value Stheor from
[4,13].

�2/�2 Detuning domain ε S Stheor

4.5 [−7.0�,−5.6�] 1.39 ± 0.05 2.2 + 0.3
− 0.3 2.3

7.0 [−8.8�,−5.5�] 1.51 ± 0.08 3.2 + 1.2
− 0.7 3.1

9.4 [−9.2�,−5.5�] 1.61 ± 0.09 4.9 + 4.1
− 1.6 4.7
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FIG. 4. Evolution of the cross-section ratio vs � for I+ 	 2.8Isat.

intermediate values of the detuning for our determination
of ε. This range matches the conditions where the method
can be applied without restrictions. For example, in the case
of Fig. 3, the estimation of the cross-section ratio is done
in the range −8.8� < � < −5.5�. In this case, we have
� 	 �I+/

√
2Isat 	 2.5� and |�| � 2�. Note that the secular

limit is satisfied because �2 + �2 > 35�2. In this interval,
the ellipticity is quite constant, as predicted, and we get ε =
1.51 ± 0.08, i.e., σR = 3.2σL. This value is in good agreement
with [4,13], which gives a theoretical value Stheor of 3.1.

Table II summarizes the measures obtained in three differ-
ent configurations. In each case, the measure and the predicted
value of S are very similar, with a relative difference of
less than 5%. Unfortunately, despite the good precision on
the ellipticity, the error on the cross section is significant.
This is due to the nonlinearity of the relation between these
two quantities (Fig. 1). Moreover, we get asymmetric errors
because the derivative is also nonlinear. As a consequence the
smaller the ellipticity is, the better the precision is.

Of course, the possibility to measure σR is particularly
interesting for parameters where no theoretical predictions
are available or where theoretical predictions are questionable
because of the approximations. This is particularly the case
for smaller detunings and intensities. Figure 4 shows the
evolution of the cross-section ratio for −7.5� < � < −1.8�

and I+ 	 2.8Isat. It is interesting to note that S exhibits a
maximum around � = −5�, with values larger than 5. These
values are rather high compared to those used in the literature,
but they are consistent with Eq. (1). Close to the resonance,
the ratio varies between 1 and 2, values which lead to a dense
cloud, as expected for these detunings. However, far from
resonance the ratio is a little bit larger than 2, but the density
is small due to a weak restoring.

IV. CONCLUSION

In this paper, we propose a method to determine experi-
mentally the reabsorption cross section σR in a cloud of cold
atoms. This method allows us to measure σR for a large set
of MOT parameter values. The method is nondestructive and
is based on ellipticity measurements of the atomic cloud. The
reabsorption cross section can be measured very easily. The
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results of the measurements are in good agreement with the
calculation done with the dressed-atom picture in the limit
studied here (large detunings and intermediate intensities).
We also make measurements for MOT parameters for which
no theoretical predictions have been done. The measurements
show that the cross-section ratio is underestimated in the
literature in this case. We discuss the limitations of the method

regarding the MOT parameters and the trap configuration. The
precision of this method can be as high as desired; it requires
only more acquisitions. A good precision is needed especially
when an important reabsorption is expected. Measuring the
cross section can be very useful to improve our description of
the reabsorption in future studies on spatiotemporal dynamics
of the atomic cloud.
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