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Instabilities in a Magneto-optical Trap: Noise-Induced Dynamics in an Atomic System
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The instabilities observed in the atomic cloud of a magneto-optical trap are experimentally studied
through the dynamics of the center of mass location and the cloud population. Two dynamical compo-
nents are identified: a slow, stochastic one affects both variables, and a fast, deterministic one affects
only the center of mass location. A one-dimensional stochastic model taking into account the shadow
effect is developed from these observations and reproduces the experimental behavior. It is shown that
instabilities are driven by noise and present stochastic resonancelike characteristics.

PACS numbers: 32.80.Pj, 05.40.Ca, 05.45.–a
The cooling of atoms in magneto-optical traps (MOT) is
now extensively used to study the atom properties, or as an
intermediate stage in a more complex setup, to make, e.g.,
lattices or Bose-Einstein condensates [1]. Surprisingly, the
collective dynamics of the cold atomic cloud produced by
such a system has seldom been studied, except in the case
where the trapping beams are misaligned [2,3]. In that situ-
ation, ring-shaped clouds and chaos have been observed,
and attributed to a vertex force. With well aligned beams
and highly populated trap, cloud shape instabilities are
often observed. However, to our knowledge, no systematic
studies of these instabilities have been performed so far,
leaving several fundamental points unexplained: Is the
dynamics deterministic or stochastic? What are the critical
parameters and the physical mechanisms leading to the
instabilities? The main aim of this paper is to identify
these mechanisms and to characterize the instabilities.

We work with a cesium-atom MOT in the usual s1-s2

configuration. Each of the three arms of the trap is formed
by counterpropagating beams resulting from the reflection
of the three forward beams, obtained from the same laser
diode. Two 4-quadrant photodiodes (4QP) forming an or-
thogonal dihedral (preventing stray line-of-sight effects)
allow us to monitor the 3D motion of the center of mass
(c.m.) of the cloud [4]. The number of atoms inside the
cloud is deduced from the total signal received by the 4QPs.

Instabilities consist in a deformation of the spatial
atomic distribution, leading to fluctuations of the c.m. lo-
cation r and of the number of atoms n in the cloud.
Instabilities occur only in limited ranges of the MOT
parameters, e.g., MOT detunings between 21.3G and
20.9G for a trap beam intensity of 4.4 mW�cm2 and a
magnetic field gradient of 14 G cm21 (G is the natural
width of the atomic transition), corresponding to a cloud
diameter of 1 mm. Instabilities also depend on other
parameters, such as the cesium vapor pressure in the cell,
and always appear for strong populated clouds (mean
atom number larger than 108, corresponding to an optical
thickness of 2). Note that all the above parameters affect
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the mean cloud population, and that instabilities can be
observed for a wide variety of parameters.

The typical unstable behavior of r appears as an erratic
signal interrupted by almost periodic oscillations with large
amplitude, referred to in the following as relaxation oscil-
lation behavior (Fig. 1). The spectrum of the r compo-
nents shows a peak (Fig. 2a) centered at a frequency nr ,
which depends on the parameter values, but ranges typi-
cally between 10 and 100 Hz. It also exhibits a low fre-
quency component below nn � 5 Hz, which displaces the
cloud along the first bisector of the three forward beams.
The dynamics of n for the same parameters is quite dif-
ferent: it is erratic, and shows only frequencies below nn,
and no peak (Fig. 2b). Analysis of the n behavior using
the standard tools of nonlinear dynamics analysis (recon-
struction of the attractor, Poincaré sections, 1D maps, . . .)
[5] have not evidenced any order in the n dynamics, and
we conclude that this dynamics is stochastic. Although
the behaviors of r and n seem drastically different, they
are found to be correlated when the frequency components
larger than nn are filtered, with a cross correlation coeffi-
cient of the order of 0.8. Figure 3 shows a phase space pro-
jection of the low frequency component of the dynamics.
It illustrates the correlation between n and r, and shows

FIG. 1. Experimental record of the time evolution of a com-
ponent of the c.m. location of the atomic cloud, characterized
by the relaxation oscillation behavior. Experimental parameters
are the following: each trap beam intensity 6.6 mW�cm2, trap
detuning 21.5G, and magnetic field gradient 14 G�cm. The
mean cloud population is 1.52 3 108 atoms and the cloud size
is 1 mm.
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FIG. 2. Power spectra corresponding to the behavior illustrated
in Fig. 1. In (a) c.m. location, and in (b) cloud population. The
scales are linear.

evidence of an inhomogeneous distribution of the trajecto-
ries, with two maxima in the probability distribution. The
behavior reported above is qualitatively independent of the
parameters.

The relative magnitude of the observed low frequency
stochastic fluctuations of the cloud population is of the or-
der of 1022, in which the 1�

p
n noise contributes for a

negligible amount of 1024. We could not identify the ori-
gin of the stochastic dynamics, but we checked that it was
not a linear response of the system to technical noise. We
paid special attention to the stability of the relative phases
of the beams, and checked that their drifts are less than
0.1 rad per minute. Moreover, we voluntarily modulated
the relative phase of the counterpropagating beams at dif-
ferent frequencies and observed a linear response of the
c.m. motion only at low frequencies. The instabilities sur-
vived to fast modulation (.1 kHz) of this phase, strongly
suggesting that they are not related to Sisyphus-like effects.

Two kinds of nonlinearity are known to affect the col-
lective behavior of cold atom clouds: multiple scattering
and the shadow effect [6,2]. Multiple scattering [2] arises
when a photon spontaneously emitted by an atom in the
cloud is absorbed by another one. However, as it is an in-
ternal force, it cannot directly affect the c.m. motion [7].

FIG. 3. Experimental dynamics of the atomic cloud instabili-
ties represented in the phase space �n, z�. The temporal behavior
corresponds to that of Fig. 1, for a total duration of 10 s, encom-
passing several periodic sequences. The frequencies larger than
5 Hz have been filtered. There is a clear correlation between n
and z and two preferred areas.
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The shadow effect is due to the intensity gradients pro-
duced by the absorption of the trapping lasers by the cloud
itself. It depends on the optical thickness of the cloud,
and thus on its population. This effect generates a force
compressing the atoms in the cloud [2]. In the reflected
beam MOT configuration, it also generates an imbalance
between the forward and backward trapping beams, result-
ing in a force that displaces the c.m. The observed corre-
lation between the n and slow c.m. dynamics suggests that
the shadow effect is the dominant nonlinearity [8]. An ad-
ditional evidence of this role is given by the fact that the
slow dynamical component of r displaces the cloud along
the first bisector of the three forward beams.

We built a simple 1D model taking into account the
shadow effect. Considering the dynamics of the c.m. along
the z axis, we calculate the mean Doppler force per atom.
We take into account the shadow effect by considering
that the intensity of the backward beam is equal to the
intensity of the forward beam attenuated by the absorption
of the cloud, which depends on its population (we thus
neglect the intensity gradients inside the cloud). The cloud
population is governed by a “feed-loss” rate equation [9].
We thus find the following equations of motion:

d2z
dt2 �

1
m

FT , (1a)

dn
dt

� B�ne 2 n� , (1b)

where m is the mass of an atom, FT the total force per
atom, ne the atom number in the cloud at equilibrium, and
B the population relaxation, typically B � 3 s21.

The origin of z coincides with the “trap center,” that is,
the zero of the magnetic field. Because of the absorption
of the forward beam of intensity I1, the backward beam
has an intensity I2 � I1e2a . I1 and I2 are normalized
with respect to the saturation intensity. The absorption
coefficient a is related to the absorption cross section sA

by [2,10]

a � 2
sA

S
n � 2

6p

k2

1

1 1 4D
2
1 1 IT

n
S

, (2)

where S is the section of the cloud, IT � I1 1 I2 the total
intensity, and k the wave number of the beam. D1 (D2) is
the detuning of the forward (backward) beam normalized
to G, the natural width of the transition. They are given by

D6 �
1
G

�GD0 7 ky 7 v0
Bz� , (3)

where D0 is the MOT detuning normalized to G, and v
0
B is

the Zeeman shift in angular frequency per unit length. The
force F6 acting on an atom following the 6z direction can
be written as [2,10]

F6 � 2h̄kG
I6

1 1 4D
2
6 1 IT

, (4)

and the total force is therefore FT � F1 2 F2.
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We must also take into account the dependence of the
stationary population ne on the c.m. position. We do not
know the exact form of this dependence but, for our pur-
poses, it is enough to suppose that it varies smoothly over
the typical amplitude of the c.m. motion, and then keep
just one term from its Taylor’s series. The linear term is
ruled out by symmetry considerations and we write

ne � n0

∑
1 2

µ
z
z0

∂2∏
, (5)

where n0 is the cloud population at the trap center and
z0 � 6 cm a characteristic length obtained by comparison
of the simulations with the experimental signals. The very
large value of z0 confirms that ne varies smoothly as the
c.m. is displaced. The numerical results presented below
do not depend critically either on the precise algebraic form
of ne�z� or on the value of z0.

Introducing the reduced variables Z � z�z0 and N �
n�n0, we obtain finally the following equations

d2Z
dt2 �

2h̄kG

mz0
I1

µ
1

1 1 4D
2
1 1 IT

2
e2a

1 1 4D2
2 1 IT

∂
,

(6a)

dN
dt

� B�1 2 Z2 2 N� . (6b)

The stationary solution for the c.m. (population) is Zs

(Ns � 1 2 Z2
s ). The expression of Zs involves quadrat-

ics and exponentials, and its global shape is illustrated in
Fig. 4, where it is plotted as a function of D0 and n0. The
main characteristic of the Zs diagram is the presence of a
fold in the parameter space. For D0 � 21.2, the fold is
relatively smooth, at n0 � 3 3 108. As D0 decreases, the
fold shifts towards higher n0 values and becomes stiffer.
Linear stability analysis of the solutions shows that the
stationary solution is unique and stable on the fold, for
our experimental conditions. For 21.6 , D0 , 21.2, the
system presents an eigenfrequency in the vicinity of the
fold and the damping rate decreases. This allows for re-
laxation oscillations to show up. Finally, for D0 , 21.6
and n0 � 3.5 3 108, a bifurcation towards bistability oc-

FIG. 4. Stationary solutions of Eqs. (6) versus n0 and D0.
The figure represents Zs. Bistability occurs for D0 , 21.6.
Other parameters are I1 � 3, v

0
B � 4.9 3 109 s21 m21, z0 �

0.06 m, S � 3 3 1026 m2, and B � 3 s21.
curs. The properties described above are invariant under
small changes of the other parameters.

As the stationary solutions are always stable for the pa-
rameters corresponding to experimental conditions, there
are no deterministic instabilities. However, because of
the existence of an eigenfrequency in the vicinity of the
fold, relaxation oscillations driven by noise can appear. To
evaluate this effect, white noise with amplitude z is added
to Eqs. (6) on I1 or n0 by replacing the parameter I1 (n0)
by �1 1 z �I1 [�1 1 z �n0]. Both cases give similar results.

Time evolution and the spectral analysis obtained from
this stochastic model well reproduce the main features of
the experimental observations. In particular, we find that
N and Z evolve at different time scales, as illustrated in
Fig. 5. The maximum of the spectrum envelope of Z cor-
responds to the presence of an eigenfrequency in the sys-
tem. As observed in experiments (Fig. 2), no component
at frequencies above 5 Hz appears in the N spectrum. The
fold increases the sensitivity of the system to noise, as il-
lustrated in Fig. 6a. The maximum around D0 � 21.5
evidences an enhancement of the sensitivity by 1 order of
magnitude. This allows the system to be driven by the
noise, thus displaying relaxation oscillations.

Although the noisy dynamics prevents us from direct
observation of curves like those in Fig. 4, the presence of
a fold in the phase space has an observable consequence
on the probability distribution of N and Z. Indeed, as the
slope of the curves in Fig. 4 is higher on the fold than on
its sides, the residence time of the system should present a
minimum on the fold, and therefore, the probability distri-
butions of N and Z exhibit a minimum on the fold. This
prediction is confirmed by the experimental observations,
as it can be deduced easily from Fig. 3.

The behavior discussed here is typical of systems
presenting internal stochastic resonance. Stochastic reso-
nance (SR) generates coherent motion—e.g., a periodic
motion—when noise is added to a system [11]. In
particular, SR implies a nonmonotonic dependence of the
signal to noise ratio (SNR) in the response of the system
as a function of the noise amplitude. In stable autonomous

FIG. 5. Power spectra obtained by resolving Eqs. (6) with pa-
rameters of Fig. 4 and n0 � 3.28 3 108 and D0 � 21.5. White
noise is applied to I1 with z � 2 3 1025. In (a), Z and in (b),
N . The scales are linear. Integration is performed on 10 s, for
comparison with experimental data. The multiple peak structure
vanishes when much larger integration times are used.
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FIG. 6. In (a), theoretical noise amplitude (the ratio of the rms
and average values of z) versus D0. In (b), plot of the SNR
(ratio of the peak height by the noise level) as a function of the
relative noise level. Parameters are the same as in Fig. 4 except
that in (a), n0 � 3.2 3 108 and white noise is applied on n0
with z � 2 3 1022, and in (b), n0 � 3.28 3 108, D0 � 21.5,
and white noise is applied on I1.

systems close to a supercritical Hopf bifurcation, one
observes a behavior usually referred to as internal SR
or coherence resonance, with the same properties as SR
[12–14]. In our system, in the vicinity of the fold, we
are in a similar situation, as the stable point is a focus
with a vanishing damping rate. In Fig. 6b, we have
plotted the SNR of the frequency peak of Fig. 5 versus
z . The nonmonotonic behavior clearly appears. However,
it presents a plateau rather than a well defined peak, as
usually found in the literature [11]. Thus in the present
model, the instabilities are related to the existence of
an internal SR behavior of the system. This could have
several interesting consequences on the dynamics of the
cloud, in particular if the spatial distribution of the atoms
is taken into account: for example, stochastic resonance is
known to often lead to global synchronization of spatially
extended systems.

In conclusion, we have characterized the dynamics of
the instabilities experimentally observed in a cold atomic
cloud. A simple model allows us to reproduce the essential
features of the experimental signals and to identify the
shadow effect as responsible for the nonlinearity associ-
ated with the instabilities. The dynamics is interpreted as
noise-driven relaxation oscillations of the system, through
a stochastic resonancelike phenomenon. This is, to our
knowledge, the first evidence of such a phenomenon in a
“simple” atomic system. Let us recall that our results con-
cern the experimental configuration with counterpropa-
gating beams resulting from the reflection of the forward
beams. In a configuration with six independent beams,
instabilities are also observed. In a future study, it should
be interesting to check if the same physical mechanisms
are able to explain them. Indeed, in such a configuration,
the shadow effect does not disappear, although it no longer
displaces the c.m. location. Moreover, at larger cloud
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populations, the above model displays a richer dynamics,
presenting bistability and periodic instabilities, which
could enhance the stochastic resonance. We postpone
their detailed analysis to a forthcoming work.
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