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Homoclinic chaos in a laser containing a saturable absorber
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Checks of homoclinic chaos made with nonlinear analysis techniques have been performed on the signals com-
ing from a C02 laser containing CH3I as a saturable absorber. The one-dimensional return maps of the
regimes appearing inside the alternating periodic chaotic sequence are typical of homoclinic chaos. Numerical
simulations give results in good agreement with the experimental observations. In the case of a fast absorber,
a homoclinic tangency to a cycle created in a suberitical Hopf bifurcation is seen to be responsible for the homo-
clinic behavior observed in the model.

1. INTRODUCTION

A laser containing a saturable absorber (LSA) was studied
extensively in connection with the requirement for easy
and efficient modulation of C02 laser radiation, and many
molecules have been used as saturable absorbers for pas-
sive Q switching (PQS). In the PQS regime, the laser is
spontaneously unstable, and its output intensity exhibits
periodic pulses of various shapes. In the beginning of the
1970's this PQS regime received much attention as new
absorbing molecules were searched for, but only a few pub-
lications were devoted to the mechanisms from which
PQS originates. To our knowledge, the first model able
to reproduce the PQS shapes was a four-level model for
both the laser medium and the absorber. 4 In the begin-
ning of the 1980's there was renewed interest in the LSA
as the field of optical instability grew.5 New shapes of
PQS pulses were discovered, 8 and the dual four-level
model was unable to reproduce them correctly.9 A three-
plus-two-level model was then introduced by Tachikawa
et al. to reproduce the entire experimentally observed phe-
nomenology.7'8 "0 This model was later completed by the
addition of a rotational-level bath in the gain medium."
Recently, chaotic pulses were observed both experimen-
tally'2 "3 and theoretically.'4 The dynamics of this chaos
has been interpreted through a topological analysis of the
phase space associated with the signal.'2"3 "5

The PQS regime usually corresponds to the existence of
two unstable fixed points: the Io point has zero intensity
and is a saddle point and the I+ point has a nonzero inten-
sity and is a saddle focus. As a control parameter is
varied, the I+ point loses its stability through a Hopf bi-
furcation, generating type II PQS, which destabilizes
through period doubling.'2 "6 Then alternating periodic
and chaotic sequences appear,'2 similar to those encoun-
tered in the neighborhood of a homoclinic bifurcation,'7 "8

when some conditions specified by Shil'nikov'9 are satis-
fied. However, the situation here is complicated by the
presence of the second fixed point in the phase space and
possibly by a perturbation that is due to noise.20

To our knowledge, no characterization of the chaotic be-
havior inside the alternating periodic-chaotic sequence
other than in the preliminary results given by us2 ' and in

a related paper by Papoff et al.22 has been made. Similar
characterizations have been made for a C02 laser with
feedback2 3 and in the Belousov-Zhabotinskii reaction.2 4

In fact, although chaos has been observed in the LSA,
there has been no demonstration that this was Shil'nikov
chaos and two phenomena may, in some situations, inhibit
this chaotic behavior: the noise20 and a strong attraction
of Io along its stable manifold, which can destroy sensitiv-
ity to the initial conditions.3 15

Here we report on an analysis that uses methods in-
spired by the dynamical system theory [phase portraits,
Poincar6 maps, and one-dimensional (1-D) maps] of the er-
ratic behavior inside the alternating chaotic-periodic se-
quence. We show that in the C02 + CH3I LSA, in spite of
the presence of a second fixed point in the phase space,
the dynamics qualitatively follows the Shil'nikov behavior.
We also study the evolution of the chaos between two peri-
odic regimes and show that the transition from periodic
behavior to chaos follows two different routes: period
doubling on the one hand and the Pomeau-Manneville
(type I intermittency) route on the other.

This paper is organized as follows: in Section 2 an
analysis of experimental data is presented, showing that
the PQS regime possesses the properties of the Shil'nikov
chaos. In Section 3 the stability of the fixed points of a
standard model of the LSA is discussed. The numerical
solutions of this system are analyzed in Section 4 by
using the same techniques as in Section 2 together with
Floquet's theory.

2. EXPERIMENTS
The experimental device has already been described else-
where.3 It is composed of a C02 + CH3 I LSA, in which
amplification is obtained in a mixture of C02, N2, and He
in the approximate proportions of 3:6.5:1 for a total pres-
sure of 7.8 Torr; the absorber is CH3I at a pressure of
-30 mTorr. The laser is tuned on the 10(P)32 line, in
quasi-resonance with at least three absorption lines of
CH3I.25 The general behavior exhibited by the LSA when
the cavity detuning or the pump parameter is varied in
this region of the parameter space'2 shows a cw regime
followed by a periodic regime that becomes chaotic through
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a period-doubling cascade; then periodic and chaotic se-
quences alternate, as chemical reactions have shown.26

Beyond this sequence, the laser is off. In the particular
conditions of the results discussed below, the control
parameter is the cavity detuning, and the observed order
of behavior is cw, T 2T, 4T, chaos, P(3 ), C(2), p(2), C(l), p(l),
P(O), off. The notation used here was introduced in
Ref. 15 and may be summarized as follows:

(i) The T regime refers to type II PQS: the output of the
LSA is a T periodic oscillation, emerging from the cw
regime through a Hopf bifurcation. It evolves toward
chaos through a period-doubling cascade (regimes 2'T).

(ii) The p(n) regimes refer to type I PQS: the output of
the LSA exhibits periodic pulses composed of a narrow
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high peak followed by a series of n undulations at
period T. It has been observed'2 that the pulses also un-
dergo a series of period doublings culminating in an er-
ratic regime called c(n) when the output is located in
parameter domains between the p(n) and p(n+i) regions.

We have analyzed the erratic regimes Con) to find char-
acteristic properties that support the existence of homo-
clinic chaos. The most remarkable one concerns the 1-D
maps constructed from the Poincar6 section of the attrac-
tor: the 1-D map of homoclinic chaos shows n + 1
branches and possibly a part of an (n + 2)th one; each
branch is associated with p spirals in the phase space
(p n or p n + 1), and the distance between the
branches decreases when p increases. The number of
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Fig. 1. Analysis of the C(2) experimental regime: (a) temporal sequence; (b) three-dimensional reconstruction of the attractor in the
phase space I(t), I(t + T), I(t + 2), where = 3.2 sec; (c) Poincarg section performed in the reinjection loop of the attractor in a plane
indicated by the dashed line in (a); (d) first return map of the Poincar6 section of(c). Each point of coordinates (Is, In+,) is represented by
tho numborp of undulations that soparato the itth and the ( + )th Crosgingo through the PoiMae getli. The symbols 0, I, +, and 
correspond, respectively, top = 0, 1, 2, and 3. The dashed curves separate regions corresponding to a givenp, which is indicated for each
region at the top of each the figure. The experimental conditions are given in the text.
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Fig. 2. 1-D maps of Cl) chaos: (a) close to the p(l) regime,
(b) close to the p(2 ) regime. The symbols are the same as in
Fig. 1(d).

branches becomes infinite as the system approaches the
homoclinic bifurcation. 2 4 2 7

Experimentally, the only accessible variable of the flow
is the laser intensity. An example of its temporal evolu-
tion in a Con) regime is shown in Fig. 1(a) for n = 2. The
signal shows a succession of P(P)-type pulses with p c 3.
The 1-D map is obtained in three steps: (i) A recon-
struction of the attractor is undertaken, using the time-
delay method. A projection of this attractor in the
three-dimensional space I(t), I(t + r), I(t + 2 T), with
X = 3.2 Asec (i.e. -T/7, where T is the period of the small

undulations), is shown in Fig. 1(b). It is composed of a
spiraling part diverging from I+ and of a reinjection loop,
which, in this three-dimensional representation, passes
close to Io. (ii) A Poincarg section of this attractor is
then obtained at I(t) constant [Fig. 1(c)]. The value of the
constant is chosen so that the Poincar6 section plane cuts
the trajectory in the middle of the reinjection loop, on the
ascending part of the loop [dashed line of Fig. 1(a)].
(iii) Eventually the first return map associated with this
section is plotted. As the Poincar6 section lies almost on
a straight line, this return map is equivalent to a 1-D map.
The first return map I0(t + ), I0 +,(t + T) obtained for the
C(2) regime is shown in Fig. 1(d). Three branches appear
clearly, and the beginning of a fourth one may be seen in
the top right-hand corner of the figure. Additional infor-
mation is provided by counting the number of small undu-
lations separating the two crossings through the Poincar6
section associated with each point. The dashed curves in
Fig. 1(d) define regions where the same number of undula-
tions are found. It is clear that each region corresponds
to a branch. Note that the distance between the branches
decreases when p increases. All these properties hold for
other experimentally observed c(4) regimes. The entire
behavior described above is consistent with the proper-
ties of homoclinic chaos and supports its existence in
the LSA.24

The characterization of the behavior can be refined by
studying the evolution of the chaos between the p(n) and
p(n+l) regimes. The passage from p(n) to c() is well under-
stood, as it occurs through a cascade of period-doubling
bifurcations. On the other hand, the passage from c(n) to
p(n+l) in the LSA has not been discussed. We have plotted
the 1-D maps of the Cl) regime in a region close to p(1)
[Fig. 2(a)] and in a region close to p(

2
) [Fig. 2(b)]. In the

first case, only the two branches corresponding to p = 0
and p = 1 are visible, whereas in the second case the be-
ginning of a third branch corresponding to p = 2 appears
below the 450 line. This may be considered part of the
third branch of the C(2) regime [Fig. 1(d)]. Although the
control parameter noise prevents our bringing our system
close to the bifurcation, the transition from C(l) to p(2)
might be interpreted as follows: When the system
evolves to p(

2
), a third branch appears in the first return

map below the 45° line, approaching it tangentially. Fi-
nally, p(

2
) appears through a tangent bifurcation. The

other experimentally observed C(,)_p(n+l) transitions
evolve in the same way. This behavior, completed by the
fact that the transition from the p(n) to the c(n) regime
occurs through a period-doubling cascade, corresponds
exactly to the one exhibited by homoclinic chaos. These
results confirm that the CO2 + CH3I LSA in our experi-
mental conditions exhibits a dynamical behavior consis-
tent with the properties known for Shil'nikov chaos.

3. MODEL OF THE LASER CONTAINING A
SATURABLE ABSORBER
The various theoretical models of the PQS LSA differ in
the number of molecular levels considered. Early models
aimed at a quantitative agreement for particular experi-
mental parameters and included a large number of vari-
ables to model the relaxation processes."2 In an attempt
to reach a more global description of the LSA with the
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Fig. 3. Schematic representation of the energy levels used in the
theoretical model of the LSA. The quantities with overbars
refer to the absorber medium, those without overbars to the ac-
tive medium.

simplest model, Powell et al. introduced a two-level de-
scription for the absorber and the active medium,2 8 which
displays a rich phenomenology if molecular polarization
and cavity detuning are taken into account.2 9 However,
this model could hardly provide the range of parameters
in which instabilities appear in the CO2 LSA. For this
reason, Arimondo et al.' proposed including the vibra-
tional manifolds to which the lasing and absorbing levels
are coupled, thus reproducing well the experimental do-
main of existence of PQS.

Nevertheless, there remained a qualitative discrepancy,
since this four-level model is unable to predict the
p(n) regimes observed experimentally. A definite step
toward such prediction was made by Tachikawa and co-
workers,7 8 0 who introduced the ground state of the CO2
molecule as a third level for the active medium. With
this model other authors were able to obtain the p(n) peri-
odic states and the C(') erratic ones numerically.4" 5

Although Tachikawa's model neglects the influence of in-
homogeneous broadening, it provides surprisingly good
agreement with experimental observations.

We shall therefore use this model, which is schemati-
cally represented in Fig. 3, in numerical simulations to
determine whether the different features reminiscent
of homoclinic chaos observed experimentally can be
reproduced.

The equations, verified by the photon density , the
population densities of the upper lasing level (Ml), the
lower level (M2), and the ground state (Mo) and the popula-
tion difference in the absorber M, are

= 0(;Si(Mi - M2) - M- 2K), (la)
M1 = -s4(M1 - M 2)0 + PM0 - (10 + 712)M1, (lb)

2= A(M1 - M 2)0 - 2 0M 2 + 1 2 M1, (1c)

M = y10M, + Y20M2 - PMo, (ld)
M = -2AOM - 7(M - M*), (le)

where (?) is the relative length of the amplifying (ab-
sorbing) medium, P is the pumping rate, 2

K = cT/L is the
cavity-damping rate, L is the total cavity length, T is the
mirror transmittivity, M* is the equilibrium population in
the absorber, and sA(M - M2) (M) is the saturated am-
plification (absorption) coefficient. yij are the relaxation
rates from level i to level j, and is the relaxation rate of
the absorber's population inversion. This set of equations
is just a generalization of the two-level rate-equation
model of the LSA, modified to take into account the pres-

ence of the third level in the active medium and in which
only the most relevant relaxation mechanisms have been
included. The amplification coefficient si is corrected to
take into account the rotational partition function and the
level degeneracy factor, since emission occurs between
two rotational levels not represented in this model. Note
also that spontaneous emission has been neglected in the
equation for the photon density.

As Mo + M, + M2 = N is a constant, a change of vari-
ables can then be undertaken to express the dynamics of
the LSA in terms of the evolution of the active molecule
population difference M = M - M2 and the dimension-
less intensity I = MO/Y2:

i= I(AsdM - hsiM - 2K),

M = -(I + 1)y2M + PMo + yl(N - MO)

k = y2 N - y1M - (2 + P)MO,

M= -2sqM - (M - M*),

(2a)

(2b)

(2c)

(2d)

where the combined relaxation rates 2 = (20 - Y1 -

2Y12)/2 and Y2 = (20 + Y + 2y2)/2 have been intro-
duced as well as the total density of molecules in the am-
plifier N = Mo + M + M 2.

In Eq. (2b) the term PMo + y1 (N - Mo) may be consid-
ered a source term. When the relaxation rates are such
that y1o + 22 = 20, the source term is reduced to PMO,
and the model reduces to a two-level model for both the
absorber and the amplifier since Eq. (2c) is no longer cou-
pled to the other ones.

Introducing dimensionless quantities

a =s2 -- (1)

72 _ 7
E = -' E = -'

2K 2K

A = P(V- + 1)*N 2 K-2
A= M*

U = W-2 U = W q 

a new variable representing the source term

W = [PMo + y7(N - Mo)]2 K 2

and a dimensionless time t = 
2 Kt, we can reformulate

Eqs. (2) as follows:

I = I(U - U - 1),

U = [W - U(1 + I)],

W = (A + bU - W),

U= [A- U(1 + aI)].

(3a)

(3b)

(3c)

(3d)

In Eq. (3c) the P/Y2 term has been considered negligible
compared to unity, in good agreement with the values cho-
sen by Tachikawa et al.9 and those used in our numerical
estimations (P/y 2 < 1.5 x 10-).

The threshold of the laser occurs at A = Ath =
(A + 1) (1-b). Above this threshold, Eqs. (3) have two
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Fig. 4. (a) Evolution of the eigenvalues of the Io (dashed lines)
and the I+ (solid lines) eigenvalues as functions of the A parame-
ter. AH = 1.943 is the Hopf bifurcation point. (b) Values of p/A

(solid line) and (A2 /Al) (p/A) (dashed line) versus A. Their abso-
lute values are both smaller than 1.

stationary solutions corresponding in phase space to two
fixed points Io and I+ whose coordinates (Io, U0,Wo, Uo) and
(I+, U+,W+, U+) are

Io = 0, U0 = W = A(1- b)', (10= A,

two complex-conjugate eigenvalues (p ± i, where p is
positive). Io is therefore a saddle point whose unstable
manifold is along the intensity direction and I+ is a saddle
focus. These eigenvalues are plotted versus the pump
parameter in Fig. 4. Note that the eigenvalues of I, have
real parts with different orders of magnitude: for typical
values of the parameters, IA'I = 301AI - 3 00 1pl. Therefore
one expects that, near I+, the eigendirection correspond-
ing to A' will be irrelevant and that I+ will be equivalent to
a three-dimensional saddle-focus fixed point with eigen-
values A, p ± i. Note that the eigenvector correspond-
ing to A' is quasi-orthogonal to the (U,W) plane, indicating
that these two variables, which describe the amplifying
medium, evolve on a slow time scale.

The dynamics of the system depends strongly on the rela-
tive values of the eigenvalues of I+ and of the global struc-
ture of the flow. Shil'nikov showed that if a homoclinic
orbit is associated with a saddle focus such as I+, and if in
the neighborhood of this point the characteristic time of
the flow following the focus directions is the largest one
(p/A < 1), the system has a chaotic behavior.'9 This is a
sufficient condition but not a necessary one. In particu-
lar, if the unstable and the stable manifolds are not per-
fectly connected but close to form a homoclinic orbit,
chaos may occur.30 The values of p/A are plotted in
Fig. 4(b) for the set of parameters discussed in Section 4.
It is clear that the Shil'nikov condition for chaos is ful-
filled, but, as the existence of a homoclinic orbit cannot be
predicted analytically, only a numerical resolution of the
equations will allow the presence of chaos to be inferred.

The situation is complicated here by the presence of the
second fixed point, Io. Either of two limit configurations
is possible: (i) The two points are coupled by a homo-
clinic cycle, which connects the unstable manifold of I+ to
the stable manifold of Io and the unstable manifold of Io to
the stable manifold of I+. In this case, the Shil'nikov con-
dition for chaos becomes I(A2/Al) (p/A)I < 1,39 indicating
that too large an attractive power of Io (A2 large) will de-
stroy the chaos by rescaling the trajectory at each passage
in the vicinity of Io. (ii) The two points are completely
decoupled, and their respective stable and unstable mani-
folds always remain far from the conditions of intersec-
tion. In this case, a trajectory coming from I+ always
remains out of reach from Io, which does not interfere in
the dynamics. Between these two limit cases a large
number of possible intermediate configurations exists in

I a(A + b - 1) - (A + 1) + {[a(A + b - 1) - (A + 1)]2 + 4a(A - Ath)P2

2a

U= A(1 + I+ - b)-1,

W= A(1 + I+) (1 + I+ - b)-1,

U+= A(1 + aI+)-'.

A linear stability analysis provides the eigenvalues of
the linear flow in the vicinity of these two fixed points.
With parameters corresponding to our experiments, the
stability of Io is characterized by four real eigenvalues
(A1, A2 , A3 , and A4 , where Al is positive and corresponds to
an eigenvector collinear to the intensity vector and A2, A3 ,

and A4 are negative, jA41 2 |AJ 2 A2J), and I+ is associated
with two real negative eigenvalues (A and A', A'l 2 IAI) and

which the influence of Io evolves with the strength of the
coupling between the two fixed points.

Figure 4(b) shows the values of (A2/A1) (p/A) for the same
set of parameters as above. It appears that the product
I(A2/A1) (p/A)l is negligible compared to 1, so that, if we are
in the case of strong coupling between the two fixed
points, the effect of the 1 point will be to increase the sen-
sitivity to initial conditions of the trajectories emerging
from I+. Consequently we can conclude that, provided
that the system is close to a homoclinic or heteroclinic bi-
furcation, chaotic behavior will be observed, since suffi-
cient conditions for the presence of homoclinic chaos hold
true in both cases.
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Table 1. Values of the Parameters Used in the
Numerical Simulations

Parameter Value

A 1.4to2.1
720 2.892 x 105 sec'
Y10 1.2 x 106 sec1-
712 10 sec'
A 2.16
3; 1.3 x 106 SeC-1

£ 0.137
1.2

b 0.85
a 4.17
2x 1.1 x 106 Se-1

-

0

0

10-

5

,1 , . , .. . . . . . . . . 1. ..1.4 1.6 1.8 2.0
Pump Parameter (A)

Fig. 5. Bifurcation diagram of the model of the LSA for parame-
ters of Table 1. The letters indicate the following regimes:
a, P(O); b, p(l); c, p(2 ); d, P(); e T; f I.

4. NUMERICAL RESULTS
In our experiments the main control parameter is the fre-
quency detuning. As we assume that its main effect is to
change the pump parameter A," this quantity has been
chosen as a control parameter in the following numerical
study, and all other parameters are fixed to the values
given in Table 1.

In Fig. 5 we show a bifurcation diagram corresponding
to the values of Table 1 in which the pump parameter A is
varied from 1.4 to 2.1. For each parameter value succes-
sive maxima of the I variable are plotted. This allows us
to characterize the chaotic regimes, the p(n) ones, and
their period doublings.

The calculated bifurcation diagram is close to the ex-
perimental behavior: the p(n) states with n 3 are
present and are separated by chaotic regimes C(n), except
that P(O) and p(l) experience bistability, as is often seen
experimentally. The transition from p(n) to C(n) occurs
through a cascade of period-doubling bifurcations. C(n)
signals are characterized by a quasi-random sequence of
P(m)-like pulses, with 0 m n or 0 m n + 1, de-
pending on whether we are closer in parameter space to
the p(n) or to the p(n+l) periodic window. The T regime

(type II PQS), which appears after a subcritical Hopf bi-
furcation, and the successive period-doubled orbits can
also be seen on the right-hand side of the Fig. 5. We shall
see in the what follows that the subcritical nature of the
Hopf bifurcation is a crucial point. The experimental
transition from steady state to PQS appears to be subcriti-
cal or supercritical, depending on the operating conditions
(e.g., see Refs. 3, 5, and 10), and it would be of interest to
determine the boundary between the two kinds of behav-
ior since supercritical bifurcations are observed numeri-
cally for smaller .

Figures 6(a) and 7(a) show examples of the time evolu-
tion of the laser intensity inside the C(l) and the C(2)
chaotic regions, respectively, of the bifurcation diagram
that are quite similar to experimental signals. To com-
pute the 1-D return maps associated with these regimes
and compare them with experimental results, a Poincarg
section plane must be fixed. To get the multibranched
maps characteristic of the homoclinic chaos, we choose a
plane of constant intensity, which is crossed once and only
once between two reinjection loops corresponding to the
large peaks in the temporal signal.

The Poincar6 sections for A = 1.773 and A = 1.86 are
shown in Figs. 6(b) and 7(b), respectively. Whereas the
model is four dimensional, strong volume contraction oc-
curs, and the projections of the sections on the (UW)
plane are seen to be quasi-1-D. Indeed, on computing the
Lyapunov exponents for, e.g., A = 1.86, one finds the
values 0.0168, 0.0, -0.191, and -7.81 inverse reduced
time units, yielding from the Kaplan-Yorke formula a
Lyapunov dimension of 2.088, which is known to be an
upper bound on the fractal dimension.3 2 A projection of
the corresponding attractor in the (I, U, W) subspace is dis-
played in Fig. 7(d). The fractal dimension is therefore
close to 2, suggesting that a phenomenological model in-
volving only three variables could in principle be found.
This fact allows us to construct 1-D return maps U =
f(Un), which are shown in Figs. 6(c) and 7(c). They are
seen to have exactly the same structure as those observed
experimentally, although they are computed in the (I, U
W, U) phase space instead of in a reconstructed attractor.

Similar 1-D maps can be plotted for the other chaotic
regimes and display the same features. In a general way,
the first return map of a c(n) regime shows n + 1 or n + 2
branches corresponding to the p(m) pulses of the temporal
signal. The appearance of the (n + 2)th branch in the
C(n) region is linked with the proximity of the tangent bi-
furcation in which the p(n+l) periodic orbit is created. In-
deed, as the p(n) window is approached, the (n + 2)th
branch comes closer and closer to the Un+ = U line and
eventually becomes tangent to it. Beyond the bifurca-
tion, a stable and an unstable fixed point appear, the stable
one corresponding to the p(n+l) state. To confirm this ob-
servation, we have computed the tranverse Floquet multi-
pliers of the P() regime inside its domain of stability. Two
are always small, owing to strong dissipation, and the evo-
lution of the other has been plotted in Fig. 8. The value
-1 for A = 1.8780 corresponds to the period-doubling bi-
furcation of P(3

), and the value 1 for A = 1.8647 clearly
shows that the transition from C(2) to P(

3
) occurs through a

tangent bifurcation. This has also been verified for other
bifurcations from C) to p(n+l). In the vicinity of the
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transition, there is type I intermittency, whose reinjection
mechanism is deeply connected with the Shil'nikov dy-
namics. Recall that the creation of periodic orbits with
increasing numbers of undulations by tangent bifurcations
is one of the main characteristics of homoclinic chaos.'8 33

Whereas both the scenario observed when A is varied
and the 1-D maps shown strongly favor the hypothesis of
homoclinic chaos in the model studied, no homoclinic bi-
furcation can be located for the parameters used so far.
This means that our one-parameter path does not inter-
sect the codimension-1 subset of parameter space where
homoclinic bifurcations take place. We have therefore
varied another parameter, £ which controls the time scale
on which the absorber evolves. We stress that this does
not mimic experimental operation, as increasing the ab-
sorber pressure, for example, would result in a higher £

but would also decrease the relative saturability a. Nev-
ertheless, it corresponds to using a much more saturable
absorber (for instance, SF6) with a buffer gas. Looking at
the different bifurcation diagrams obtained for increasing

, we find that the various p(n) regimes with increasing
numbers of undulations appear successively in the bifur-
cation diagram in a continuous way, without changing its

Fig. 6. Analysis of the Cl) regime of Fig. 5: (a) temporal se-
quence (time in reduced units); (b) Poincarg section performed at
I = 0.21, I > 0, in the reinjection loop of the attractor; (c) first
return map of the Poincar6 section of (b). The numbers 0 and 1
indicate the number of turns around I+ associated with each
branch. Parameters used for calculation are given in Table 1
with A = 1.773.

global structure, as can be seen from Fig. 9, indicating
that we come closer to homoclinicity.

Since the numerical integration time increases rapidly
with , it was not possible to determine the value of £

above which a homoclinic bifurcation is encountered in
the bifurcation diagram with control parameter A. Nev-
ertheless, in the limit case £ -> o, where the absorber's
population inversion can be adiabatically eliminated, lead-
ing to a three-variable model, we find an homocliniclike
bifurcation, in the neighborhood of which chaotic regimes
with as many as 41 undulations, as in Fig. 10 for
A = 1.997, could be located. Hence it is highly likely that
the global structure of the bifurcation diagram obtained
with parameters of Table 1 can be traced back to the exis-
tence of such bifurcations for higher values of £ We shall
therefore concentrate in what follows on the model ob-
tained for infinite £ and study the nature of the observed
bifurcation. Figure 11 shows the corresponding bifurca-
tion diagram.

We stress that the p(n) and c(n) solutions of this model
for the lowest n are similar to those obtained in the model
with four variables, as can be seen from Fig. 12 for the
C(2) regime. The fact that the same type of dynamics is
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Fig. 7. Analysis of the C(2) of the diagram of Fig. 5: (a) Temporal sequence (time in reduced units). (b) Poincarg section performed at
I = 0.21, I > 0, in the reinjection loop of the attractor. (c) First return map of the Poincare section of (b). 0-2 indicate the number of
turns associated with each branch. (d) Projection of the attractor on the hyperplane (I, U. W). The parameters used for calculation are
given in Table 1 with A = 1.860.

found indicates that the characteristic time scale of the
absorber is not a crucial parameter when one is looking
from homocliniclike behavior. In fact, as was already
suggested,9 the origin of the PQS behavior is the slow re-
laxation rate from the low level of the laser transition to
the ground level.

Some facts about the behavior observed for infinite 
however, contrast with the standard Shil'nikov configura-
tion involving a saddle-focus fixed point:

(i) The I+ fixed point is stable at the parameter value
at which the bifurcation occurs.

(ii) The amplitude of the undulations never shrinks to
zero and is always greater than a minimum value.

(iii) All the p(n) and C(n) states are found on one side
only of the bifurcation instead of lying symmetrically on
each side.

These three facts lead to believe that we in fact observe
in the reduced model a homoclinic tangency to an unstable
periodic orbit with positive Floquet multipliers.33 Using
a standard method to find periodic orbits and follow them
for changing parameters,3 4 we were able to locate precisely
the unstable cycle around which the flow spirals and de-
termine its transverse Floquet multipliers near homoclin-
icity, A = 1.1326 and A = 0.05646. We also discovered
that this cycle corresponds to the unstable cycle created at
the subcritical Hopf bifurcation of I+ for A 1.974 and
annihilated for higher A in a saddle-node bifurcation with
the T periodic orbit for A 2.034. As it corresponds to
an infinite number of undulations, hereafter it will be
called P(o).

For evidence that a homoclinic tangency to P(') occurs
in the model for A = 1.997, we computed the stable and
unstable manifolds W and W, respectively, of P(') for

12.0

> 8.0

a)C

4.0

0.0

-~~~~~~~~~~~~~

1Alt1 I ! ii'!1lJl , 

l . . . . . . . . . . . . . . . . I

Lefranc et al.



Vol. 8, No. 2/February 1991/J. Opt. Soc. Am. B

0.0

(a)

3.10

+ X

2.60

2.10
2.10 2.60 3.10 3.60

(b)

Fig. 10. (a) Temporal signal obtained for A = 1.997 with the re-
duced model ( infinite). A pulse with 41 undulations can be
seen. (b) First return map of the Poincar6 section plane I =
0.2, I > 0, with 42 branches. The branches converge geometri-
cally with an asymptotic rate equal to 0.882. Except for K, the
parameters may be found in Table 1, as they can for Figs. 11-13.
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parameter values A = 1.997 and A = 1.991. The inter-
section of these manifolds with a section plane transverse
to P(w) is shown in Fig. 13. It is clear that, for A = 1.997,
Wu and W, become tangent so that a homoclinic orbit that
is biasymptotic to the unstable cycle is created.3 3 For
A < 1.997 the stable manifold acts as a separatrix and
prevents the trajectories that spiral around P(') from
reaching I+. This explains the generalized bistability ob-
served between I+ and the p(n) and c(n) regimes for n > 8
(1.974 < A < 1.997). For A > 1.997, W,, intersects W
transversally, so that the attraction basin of I+ extends
beyond P('). This is why a sudden transition from chaos
to a constant-intensity region is observed in the bifurca-
tion diagram of Fig. 11 when A = 1.997 is reached. There
is still bistability between the period-doubling cascade of
the T regime and I+ for 1.997 < A < 2.034, but P(-) is no
longer involved.

It is interesting to note that the 1-D maps computed
in the case of a homoclinic tangency to a cycle, as in

3.60
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Fig. 8. Plot of the largest transverse Floquet multiplier associ-
ated with the p(3) periodic orbit as a function of A.
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Fig. 11. Bifurcation diagram obtained with infinite . The sud-
den transition from chaos to I+, which can be seen at the right,
corresponds to a homocliniclike bifurcation.
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Fig. 12. Temporal signal obtained for A = 1.888 with the re-
duced model ( infinite). It is similar to signals of the four-
variable model computed for equivalent pump parameters and
may be compared with Fig. 7(a).

Fig. 10, have exactly the properties that were originally es-
tablished2 4'2 7 in the case of a saddle-focus fixed point.
We cannot therefore exclude the possibility that the 1-D
maps observed experimentally are related to a homoclinic
tangency.

The fact that the unstable cycle P(') involved in the ho-
moclinic tangency is created in the Hopf bifurcation of I+
is quite important for two reasons:

(i) The p(n) regimes for n 8 are created, whereas P(')
does not yet exist. This means that this part of the bifur-
cation diagram is controlled by the saddle focus 1+ as if we
were in a standard Shil'nikov situation. As the Hopf bi-
furcation is encountered, there is a crossover from I+ to
P(') as the organizing center of the dynamics, since I+ is
then isolated from the remainder of the phase space.

(ii) In experiments with CH3 I, and in numerical simu-
lations as well, a reduction of the amplitude of the un-
dulations of the p(n) regimes has not been observed;
furthermore, no scenario for the type ... C(n-1), p(n) C(n),
p(n+) ... ... (n+l) , p(n), C- ... has been encoun-
tered. This suggests that, in the experimental situation,
the mechanism leading to chaos involves homoclinicity to
a periodic orbit, in the same way as in the numerical
study. As the scenario described in the case of a fast ab-
sorber can occur only if the Hopf bifurcation is subcriti-
cal, working in parameter space regions where I+ and the
PQS regime experience bistability could help in locating a
homoclinic tangency experimentally.

5. CONCLUSION
Experimental chaotic regimes of the LSA of the type con)
have been shown to display the characteristic features of
homoclinic chaos through the analysis of first return
maps of the signal and the study of the transitions be-
tween chaotic and periodic regimes. A now-standard
model of the Q-switching LSA has been explored numeri-
cally, reproducing the experimental behavior well. The
results obtained with a fast absorber suggest that the
phase diagram of a LSA is determined largely by a homo-
clinic tangency to an unstable cycle created in a subcritical
Hopf bifurcation, which explains the homocliniclike be-
havior observed.
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Fig. 13. Intersection with a section plane transverse to P(") of
the stable (W,) and unstable (Wa) manifolds of P(') in the neigh-
borhood of the unstable cycle. The point where the two mani-
folds cross is the intersection of P(') with the section plane:
(a) For A = 1.991, W3 and W are disconnected. Region I is the
attraction basin of 1+, and region II is the part of phase space
where motion on the attractor takes place. The two regions are
separated by W. (b) For A = 1.997, W and W are tangent to
each other.
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